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A B S T R A C T   

Modern neuroscience approaches including optogenetics, calcium imaging, and other genetic manipulations 
have facilitated our ability to dissect specific circuits in rodent models to study their role in neurological disease. 
These approaches regularly use viral vectors to deliver genetic cargo (e.g., opsins) to specific tissues and 
genetically-engineered rodents to achieve cell-type specificity. However, the translatability of these rodent 
models, cross-species validation of identified targets, and translational efficacy of potential therapeutics in larger 
animal models like nonhuman primates remains difficult due to the lack of efficient primate viral vectors. A 
refined understanding of the nonhuman primate nervous system promises to deliver insights that can guide the 
development of treatments for neurological and neurodegenerative diseases. Here, we outline recent advances in 
the development of adeno-associated viral vectors for optimized use in nonhuman primates. These tools promise 
to help open new avenues for study in translational neuroscience and further our understanding of the primate 
brain.   

1. Nonhuman primate as a valuable model for study of human 
diseases 

A major goal of modern neuroscience is to inform our understanding 
of the human condition and brain-based disorders. However, this re-
quires better comprehension of the distributed anatomical and molec-
ularly diverse pathways, and functional circuits underlying disease. 
Recent advances in genetic technologies have made it possible to control 
and image neuronal circuits in living animals, through the delivery of 
various effectors, sensors, and reporters to the brain (Boyden et al., 
2005; Fenno et al., 2011; Wang et al., 2019; Yang and Yuste, 2017). This 
breakthrough in technology has advanced our understanding of neural 
circuits, cell-types, molecules, neurotransmitters, and gene regulatory 
elements that work together to contribute to the progression of disease 
(e.g.(Coley et al., 2021; Cummings and Clem, 2020; Fadok et al., 2018; 
Pignatelli and Beyeler, 2019; Xu et al., 2019)). For example, research on 
anxiety-relevant circuits has leveraged optical control of specific 

cell-types (e.g. somatostatin and corticotrophin-releasing hormone 
expressing cells) and their projections to threat-relevant regions (e.g. 
central amygdala to periaqueductal gray interneurons) in order to 
elucidate multiple distinct mechanisms that underlie specific aspects of 
threat responding behavior (Ciocchi et al., 2010; Fadok et al., 2017; 
Holley and Fox, 2022; Tovote et al., 2016). This work has far-reaching 
implications for our understanding of anxiety disorders, by identifying 
multiple distinct mechanisms that likely contribute to differences in 
symptomatology. Similarly, in basic research studies of the mechanisms 
relevant to neurodegenerative diseases like Parkinson’s, optical inhibi-
tion of cells in the subthalamic nucleus of parkinsonian rodents was 
sufficient to improve 6-hydroxydopamine-induced forelimb akinesia, 
opening the door to potential treatment avenues for patients with PD 
(Yoon et al., 2014). Unfortunately, these advances have not led to a large 
number of new and improved treatments for neurological diseases. This 
gap between rodent models of disease and translational outcomes is due, 
in part, to difficulty in validating the relevancy of these potential targets 
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in human disease, as well as in understanding how these potential 
therapeutic compounds interact with their molecular targets in pri-
mates. Differences in evolutionary pressures have contributed to dif-
ferences in brain structure and function across species, including the 
expansion of cortical regions during human evolution (Ahmed, 2018; 
Baker et al., 2020; Ménard et al., 2016; Pine et al., 2021; Preuss and 
Wise, 2022), potentially contributing to poor predictability of rodent 
disease models to the human condition. Nonhuman primates (NHPs) are 
well-suited to bridge this gap as their recent evolutionary divergence 
from a common ancestor have endowed them with many anatomical, 
physiological, and ethological similarities to humans (Kalin and Shelton, 
2003; Öngür and Price, 2000; Petrides and Pandya, 1999, 2002; Phillips 
et al., 2014). This makes them well suited for anatomical and functional 
dissection in both the central nervous system (CNS) and peripheral 
nervous system (PNS), and as models for interrogation of potential 
therapeutic targets. 

Perhaps the most notable distinction between human and rodent 
brains is the expansion of neocortex during human evolution (Kaas, 
2012; Öngür and Price, 2000; Petrides and Pandya, 1999, 2002; Pine 
et al., 2021). This expansion is often thought to have contributed to the 
many high order abilities and social complexities related to human 
uniqueness (Kaas, 2012; Smaers et al., 2011). Many studies in humans 
have shed light on the neuronal circuits associated with these abilities, 
however, due to the limitations of the available tools for the study of the 
human brain, a more comprehensive understanding of the underlying 
biology is still needed (Craig, 2009; Cristofori et al., 2019; Gläscher 
et al., 2012; Horga et al., 2014). To this end, NHPs are of particular 
importance. To briefly review, NHPs can be roughly broken down into 
various simian species, which include monkeys and apes, and pro-
simians, such as lemurs. Monkeys can be further divided into Old World 
(Catarrhini) and New World (Platyrrhini) monkeys (Welker, 2017). 
Marmosets (Callithrix jacchus), which diverged from the human lineage 
approximately 35 million years ago (MYA), and rhesus macaques 

(Macaca mulatta), which diverged from humans even more recently, 
approximately ~25 MYA (Fig. 1), are the two most common NHPs used 
in research. It is this recent evolutionary divergence from a common 
ancestor that has made NHPs a valuable model in neuroscience, as they 
possess a highly elaborated prefrontal cortex, including a 
well-developed internal granular layer (Bernardi and Salzman, 2019; 
Öngür and Price, 2000; Petrides and Pandya, 1999, 2002). Because they 
are our phylogenetic neighbors, NHPs share many behavioral and 
anatomical features with humans (Kalin and Shelton, 2003; Öngür and 
Price, 2000; Petrides and Pandya, 1999, 2002; Phillips et al., 2014). For 
example, the ability to navigate social complexities has been hypothe-
sized to be enabled by the evolutionary expansion of the primate pre-
frontal cortex (Dunbar and Shultz, 2007; Pine et al., 2021). Indeed, 
unlike many animals, both NHPs and humans have developed complex 
social behaviors that have helped them navigate the complexities of 
living in large social groups (Chang and Platt, 2014). These include 
prosocial behaviors (Miller et al., 2016), social imitation (Subiaul et al., 
2004), and in New World Monkeys like marmosets, monogamy and 
infant rearing (Miller et al., 2016; Saito, 2015). The shared social rep-
ertoires between monkeys and humans have been helpful in studying the 
underlying biology of social behaviors (Chang and Platt, 2014; Ziegler, 
2018). In addition to social behaviors, the phylogenetic proximity of Old 
World monkeys, like rhesus macaques, to humans provides an avenue to 
study the primate brain which has a similar structure and cytoarchi-
tecture to the human brain (Öngür and Price, 2000; Petrides and Pan-
dya, 1999, 2002). For this reason, primates can contribute to 
understanding human-specific cognitive functions like higher-order 
cognition, attention, and working memory (Brady and Hampton, 
2018; Deaner and Platt, 2003; Dezfouli et al., 2021; Rich and Wallis, 
2016; Snyder et al., 2021; Xie et al., 2022). 

While the phylogenetic proximity of NHPs to humans has made them 
anatomically and behaviorally similar, it is also likely that throughout 
evolution, the composition and function of neuronal circuits have 

Fig. 1. Evolutionary tree depicting the phylogentic relationship of common research species. Among these species, Old World Monkeys, like the rhesus macaque, are 
approximately more similar to humans than New World Monkeys and rodents. 
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adapted based on the evolutionary pressures placed on the species (Katz 
and Harris-Warrick, 1999). That is to say, while rodents and humans 
may share basic organization of circuits, changes within these circuits 
can cause large and important changes in behaviors (Katz and 
Harris-Warrick, 1999). Indeed, recent studies have found that while 
there seems to be a strong evolutionary conservation of cell-types be-
tween rodents and primates, there are also a number of primate-specific 
cell-types distributed throughout the brain-in cortical and subcortical 
structures and in midbrain (Hodge et al., 2019; Kamath et al., 2022; 
Krienen et al., 2020; Schmitz et al., 2022). For example, von Economo 
neurons and fork neurons which were originally assumed to exist only in 
humans and great apes, have been identified in Old World Monkeys 
(Evrard, 2019). This discovery provides the opportunity to elucidate the 
function of these neurons, as they have been shown to have projections 
to regions often implicated in studies of psychological dysfunction in 
both humans and NHPs (Craig, 2009; Evrard, 2019; Fox et al., 2015). 
Similarly, primates have a larger diversity of interneurons (Fishell and 
Kepecs, 2020; Franjic et al., 2022; Krienen et al., 2020; Schmitz et al., 
2022), which may impact circuit dynamics in ways that cannot be 
studied in rodent models. For example, researchers have identified a 
primate-specific striatal interneuron (i.e. GABAergic neurons that ex-
press TAC3), which is thought to have emerged through a develop-
mental repurposing of dopaminergic periglomerular cells of the 
olfactory bulb (Krienen et al., 2020; Schmitz et al., 2022). Additionally, 
a novel excitatory cell type expressing neuropeptide Y (NPY) was 
recently discovered in the primate visual cortex (Wei et al., 2022). As we 
aim to further dissect and elucidate the distributed brain-body circuits 
related to human pathology, the ability to target and manipulate specific 
cells will become increasingly important as they may be key de-
terminants in the emergence of brain based disorders in humans. 

In brief, rodent models have been useful in understanding the mo-
lecular and cellular basis of diseases, due in large part to advances in 
molecular genetic technologies (Boyden et al., 2005; Fenno et al., 2011; 
Yang and Yuste, 2017). However, rodents and humans differ in physi-
ology, anatomy, and social complexity. To this end, NHPs are of 
particular importance because of the recent evolutionary divergence 
between humans and primates that have made them similar to humans 
both biologically and socially. However, a critical component of trans-
lation includes the translation of the tools that have been commonplace 
in rodent neuroscience. In this review, we highlight the need for more 
efficient neurotropic AAVs that can be delivered systemically in NHPs, 
recently engineered capsid variants that can cross the blood brain bar-
rier in NHPs, and advances made to target specific cell-types. 

2. AAVs enable gene delivery and circuit interrogation 

The ability to define, monitor, and manipulate a neural circuit re-
quires precise delivery of reporters, sensors, and effectors to the indi-
vidual circuit components (e.g. cell-types). Viral vectors such as herpes 
simplex virus (HSV), rabies, adenovirus, lentivirus (LV), and adeno- 
associated viruses (AAVs) have emerged as an effective tool for neuro-
science in that they enable neuronal tracing and functional interrogation 
through the delivery of various transgenes (Davidson and Breakefield, 
2003; Ghosh et al., 2020; Hui et al., 2022; Kristensson et al., 1982; Liu 
et al., 2022). Viral vectors are composed of: i) a capsid, an outer protein 
shell enclosing the genetic material and which determines the vector’s 
tropism, or ability to infect different cell-types; ii) regulatory elements 
such as enhancers or promoters which restrict expression to specific cell 
or tissue types; and iii) a transgene (Bulcha et al., 2021). Transgenes 
include fluorescent proteins as genetic reporters for visualization, sen-
sors for measuring neurotransmitter release (e.g., GCaMP, DLight, etc.), 
opsins and synthetic receptors for cellular manipulation (e.g., ChR2, 
DREADDs), and repair templates for CRISPR-Cas9 based gene editing 
and expression manipulation (e.g., using CRISPRa/i) (Boyden et al., 
2005; Klapoetke et al., 2014; X. Li et al., 2005; Magnus et al., 2011; 
Patriarchi et al., 2018; Roth, 2016; Yim et al., 2020; F. Zhang et al., 

2007). Such genetic tools have advanced our understanding of how 
various cell-types and specific circuits contribute to adaptive behaviors 
and emergent properties of the brain. Among the viral vectors, AAVs are 
considered to be the safest since they are non-pathogenic, and are 
naturally replication deficient i.e. they lack the genes necessary for 
replication and replicate only when co-infected with a helper virus 
(Buller et al., 1981; Rose and Koczot, 1972). In contrast, lentiviruses 
transduce cells with higher efficiency than AAVs but there is uncertainty 
surrounding their safety due to the possibility of random insertional 
mutagenesis (Zheng et al., 2018). This can affect the genetic code at the 
DNA insertion site, leading to adverse outcomes, including cancer 
(Zheng et al., 2018). Similarly, herpes viral vectors can cause strong 
inflammatory responses (Ghosh et al., 2020). These non-specific and 
adverse effects have precluded them from widespread use in NHPs 
(Tremblay et al., 2020). Additionally, AAVs are capable of transducing 
both dividing and post-mitotic cells such as neurons, and so are ideally 
suited for gene manipulation studies that require stable, long term 
transgene expression in cells that have already matured (Bartlett et al., 
1998). For these reasons, recombinant AAVs (rAAVs) have become the 
viral vector of choice for in vivo gene therapy applications, with more 
than 285 registered clinical trials to date (Kuzmin et al., 2021; U.S. 
National Library of Medicine (www.clinicaltrials.gov)). 

For the study and treatment of neurological and neurodegenerative 
diseases, widespread distribution of transgene expression could be 
transformative (Hadaczek et al., 2016; Muramatsu, 2010; Sun and Roy, 
2021). For example, idiopathic Parkinson’s disease is hypothesized to 
result from the aggregation of a protein called alpha-synuclein (α-Syn) 
first in the enteric nervous system, before it propagates up the vagus 
nerve to the basal forebrain, midbrain and ultimately the cerebral cortex 
(Braak et al., 2003). rAAVs can be used to deliver a pathogenic protein 
such as α-Syn to model PD in animals, and help tease apart the cell-types 
in the ENS and CNS that are susceptible to α-Syn pathology (Alam et al., 
2022; Challis et al., 2020; Huntington and Srinivasan, 2021; Kirik and 
Björklund, 2003; Ulusoy et al., 2010). In such cases, widespread trans-
gene expression is required. Conversely, the pathogenic protein can be 
silenced, or the disease phenotype may be reversed by delivering a 
therapeutic gene such as GBA1, which encodes the lysosomal enzyme 
Glucerebrosidase, and has been shown to reduce inflammation and ag-
gregation of α-Syn in models of PD as well as Gaucher’s disease-a lyso-
somal neurodegenerative disorder (Abeliovich et al., 2021; Sardi et al., 
2011, 2013). The route of AAV administration, dose, age at the time of 
injection, and preexisting neutralizing antibodies against it in the host, 
are all key determinants of an AAV’s safety, efficacy and tropism (Chan 
and Deverman, 2022). There are many advantages to direct in-brain 
injection. In fact, most studies to date have directly injected viruses 
into the brain to deliver genetic cargo to specific regions. This has been 
performed in animal models of PD to target the putamen or substantia 
nigra (Bartus et al., 2013; Christine et al., 2009; Kaplitt et al., 2007; Kells 
et al., 2012; Muramatsu, 2010). Despite its many advantages, which 
include relatively dense and robust expression surrounding the infusion 
site, targeting large, diffuse, or spatially distributed regions can require 
multiple injections. Thus, this route of administration is most suitable 
for localized targets (Wang, 2021). Covering entire brain regions re-
mains a challenge due to the size of the primate brain and often requires 
multiple craniotomies. Systemic delivery of AAVs obviates the need for 
multiple direct injections and importantly reduces the health risks 
associated with extremely long and highly invasive surgeries. As a 
therapeutic approach, systemic administration via a single injection 
might be a safer alternative toward achieving brain wide gene trans-
duction (Bourdenx et al., 2014; Kimura and Harashima, 2022). Ulti-
mately, increased efficacy of BBB-crossing AAVs may be combined with 
other technologies to achieve localized expression. However, crossing 
the BBB, which acts as a gatekeeper by preventing toxins and pathogens 
in the systemic circulation from entering the CNS, is a major hurdle for 
efficient gene delivery. 

To date, 13 distinct naturally-occurring or wildtype serotypes of 
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AAVs, (AAV1-13) have been identified in humans and NHPs (Srivastava, 
2016). Each of these serotypes differs in capsid structure and, therefore, 
tropism (Agbandje-McKenna and Kleinschmidt, 2012). The most 
commonly used serotypes in rodent research are AAV2, AAV5, AAV8, 
and AAV9, which transduce the CNS, although some transduce other 
organs as well (Aschauer et al., 2013). In NHPs, the most commonly used 
serotypes are AAV5 and AAV9 (Tremblay et al., 2020). AAV9 has been 
particularly widely studied because of its ability to cross the BBB and has 
been employed in several CNS-targeted gene therapies (Chan and 
Deverman, 2022; Chen et al., 2021; Foust et al., 2009; Song et al., 2022; 
Yang et al., 2014; Zhang et al., 2011). Efforts have also been made to 
characterize other serotypes that also have the capability to cross the 
BBB. For example, Gao et al. cloned and identified more than 100 novel 
rAAVs from human and NHP tissues (Gao et al., 2005; Gao et al., 2002). 
Among these, AAVrh8, AAVrh10 and AAVhu32 were found to cross the 
BBB with high efficiencies, similar to AAV9. 

However, these AAVs, including AAV9, have limitations that have 
prevented their wider use. For instance, their cell-type tropism can vary 
across species. In neonatal mice and macaques, intravenously adminis-
tered AAV9 transduces neurons preferentially, whereas in juvenile and 
adult mice and macaques, the tropism shifts toward astrocytes (Bevan 
et al., 2011; Dehay et al., 2012; Foust et al., 2009; Gray et al., 2011; 
Mattar et al., 2013; Samaranch et al., 2012). Moreover, AAV9 and the 
other BBB crossing serotypes mentioned above have a higher tropism for 
peripheral organs such as the liver than the brain (Gray et al., 2011; 
Zincarelli et al., 2008). This is especially concerning in large animals 
such as NHPs as they require large volumes of virus for systemic delivery 
and the high doses of AAV needed to achieve clinical relevance can lead 
to hepatotoxicity or sensory neuron toxicity (Hinderer et al., 2018). 
Additionally, humans as well as NHPs harbor neutralizing anti-AAV 
antibodies to certain wildtype AAV serotypes from pre-existing expo-
sure or develop anti-AAV antibodies after therapeutic rAAV adminis-
tration (Louis Jeune et al., 2013). This is a limiting factor for gene 
therapy applications where subsequent viral administration may be 
needed if the transgene expression wanes over time. Another important 
consideration is the ~4.7 kb size limitation of the AAV vector genome, 
which is comparatively smaller than that of lentiviruses (~9.7 kb) or 
herpes simplex virus (~150 kb) (Kumar et al., 2001; Latchman, 2001; 
Sena-Esteves et al., 2000). 

When designing a study, it is important to take these considerations 
into account. In studies of the primate brain, it is important to ensure 
that the target gene sequence is reliably expressed, to minimize off- 
target effects, and to ensure animal safety. This has led most studies to 
prefer AAVs. However, if the genetic cargo is larger than optimal for an 
AAV genome, researchers run the risk of lower transduction efficiency, 
affecting their ability to perform the desired manipulation (Wu et al., 
2010). These cost-benefit calculations are study-specific and constantly 
changing. Development of cell-type specificity, as a function of the viral 
capsid or shortened enhancer and promoter cargo, as described below 
could mitigate off-target effect. In the following sections, we will discuss 
current efforts to develop novel systemic rAAV vectors with high 
transduction efficiency and optimized biodistribution, with minimal 
off-target delivery, and low immunogenicity for gene delivery to the 
NHP CNS (Challis et al., 2022; Chan and Deverman, 2022; Davidson 
et al., 2022). 

3. Capsid engineering for systemic delivery to achieve tissue 
specific biodistribution in NHPs 

The capsid of an AAV is its primary point of interaction with re-
ceptors on the host cell surface which enable the virus to be internalized, 
and ultimately deliver their genetic cargo to the cell nucleus (Challis 
et al., 2022; Li and Samulski, 2020). Because of this, the capsid structure 
of AAVs have been widely researched in order to determine the protein 
domains responsible for cellular receptor binding, and consequently the 
virus’ tropism and efficacy (Challis et al., 2022; Lee et al., 2018; Li and 

Samulski, 2020). Capsid modification or engineering is one route toward 
altering an AAV’s tropism and efficacy as several permissive sites for 
rational and random amino acid substitutions and insertion have been 
identified (Challis et al., 2022). Through capsid engineering, we can 
enhance and refine AAV tropisms, as well as identify novel AAV sero-
types with improved BBB crossing properties. 

Capsid engineering can be carried out either through rational design 
or directed evolution. Rational design capitalizes on the knowledge of 
existing AAV serotypes to systematically predict and refine virus func-
tion (Lee et al., 2018). On the other hand, directed evolution is a 
high-throughput approach that involves using a selection process to 
generate variants with the desired properties such as antibody neutral-
ization and/or tissue and cell-type tropism. By iteratively creating many 
non-naturally occurring viral serotypes and selecting those with the 
desired tropism for the next round of evaluation, researchers have been 
able to discover novel capsid variants that have a higher transduction 
efficiency at lower titers or concentration (Chan et al., 2017; Deverman 
et al., 2016; Körbelin et al., 2016; Kumar et al., 2020; Nonnenmacher 
et al., 2021). For example, our group has developed the Cre 
recombination-based AAV targeted evolution (CREATE) selection 
method (Deverman et al., 2016). In brief, the CREATE method enables 
the recovery of capsid sequences that transduce Cre-expressing cell 
populations in transgenic mice. Wherever Cre is present, a library 
fragment adjacent to the cap gene is inverted. PCR-based amplification 
can then detect the sequences that have successfully transduced the 
target population. After multiple rounds of evolution, top performing 
capsids can then be selected and characterized. This method led to the 
identification of AAV-PHP.B and AAV-PHP.eB, which target the mouse 
CNS (Chan et al., 2017; Deverman et al., 2016). Both AAV-PHP.B and 
AAV-PHP.eB are derived from AAV9, with AAV-PHP.eB showing >50% 
transduction of cells across brain regions of C57BL/6J mice (Chan et al., 
2017). However, the ability of these engineered variants to transduce 
cells in the CNS of other mouse strains or NHPs is dependent on the 
administration route and whether it can cross the BBB (Mathiesen et al., 
2020). Indeed, IV administration of AAV-PHP.B in marmosets showed 
poor transduction of neurons and astrocytes similar to AAV9 (Matsuzaki 
et al., 2018). Furthermore, Hordeaux et al. reported that a higher dose 
(7.9E13 gc/kg) of the AAV-PHP.B vector resulted in acute toxicity in an 
IV-injected macaque (Hordeaux et al., 2018). Subsequent studies 
revealed that the enhanced CNS tropism of AAV-PHP.B and AAV-PHP.eB 
in the C57BL/6J mice might be due to their interaction with the LY6A 
receptor, which is a GPI-anchored protein that is highly expressed by 
brain microvascular endothelial cells (Hordeaux et al., 2019; Mathiesen 
et al., 2020). Interestingly, there is no LY6A homolog in primates thus 
limiting the utility of these viruses in primates, and further highlighting 
the need for molecular target identification and validation studies in 
NHPs as a critical aspect of early research. We have begun to extend this 
directed evolution strategy to develop novel AAVs that can be used to 
target primate cells. Multiplexed-CREATE (M-CREATE) implements in-
ternal controls to reduce sequencing bias and increase the number of 
variants identified with enhanced CNS tropism (Kumar et al., 2020). 
This approach can be iterated across species, testing thousands of can-
didates in mice to identify top-performing capsids for primate testing. 
Recently, our lab used M-CREATE to identify systemic variants with 
enhanced CNS and PNS transduction in both Old World and New World 
monkeys. In marmosets, we found two variants evolved from AAV-PHP. 
eB, AAV-CAP-B10 and AAV-CAP-B22, to have enhanced CNS trans-
duction after IV delivery in adult marmosets (Goertsen et al., 2022). 
AAV-CAP-B10 and AAV-CAP-B22 displayed four and two-fold increased 
neuronal transduction over AAV9, respectively. Furthermore, 
AAV-CAP-B10 showed decreased expression in the liver, where expres-
sion is typically associated with toxicity, as compared to AAV9. Impor-
tantly, broad and robust transgene expression was seen across cortical, 
subcortical, and cerebellar regions as well as in the dorsal root ganglia 
(DRG) and the spinal cord (SC). 

More recently, we have developed AAV-MaCPNS1 and AAV- 
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MaCPNS2 (Chen et al., 2022). Although these AAVs were designed to 
target the PNS in rodents, we found that they transduce PNS and CNS in 
both marmosets and rhesus macaques. Specifically, in adult marmosets, 
IV delivery of AAV-MaCPNS1/2 capsids carrying fluorescent reporter 
proteins (i.e., ssAAV:CAG-eGFP or ssAAV:CAG-tdTomato) targeted PNS 
and CNS more efficiently than AAV9. In the PNS, enhanced transduction 
was observed in DRG, the small intestine (SI), and the ascending fiber 
tracts in the dorsal column of the spinal cord (SC). Surprisingly, in the 
CNS, diffuse brain-wide transduction was seen in regions including the 
cortex, thalamus, globus pallidus, cerebellum, and brainstem. This 
tropism was recapitulated in infant rhesus macaques using IV delivery of 
AAV-MaCPNS1/2. In the PNS, enhanced transduction was seen in the 
SC, DRG, and gastrointestinal (GI) tract, including the esophagus, colon, 
and SI. Similar to what was observed in marmosets, in the rhesus 
monkey CNS, AAV-MaCPNS1/2 capsids mediated enhanced brain-wide 
transduction, including areas of the cortex, hippocampus, putamen, and 
brainstem. Additionally, AAV-MaCPNS1/2 displayed an increase in 
astrocyte transduction over AAV9 in the cortex and thalamus. However, 
of the two, MaCPNS2 had the greater fold increase in astrocytes. These 
results demonstrate the potential of these capsids in interrogating pe-
ripheral to brain circuitry. 

In addition to M-CREATE, a multi species screening and character-
ization strategy was used to identify another capsid variant, AAV-CAP- 
Mac, for systemic brain-wide delivery in Old World Monkeys, 
including rhesus macaques and green monkeys (Chlorocebus sabaeus) 
(Chuapoco et al., in press). To characterize the transduction properties 
of AAV-CAP-Mac, pools of AAV-capsids, including AAV9, AAV-PHP.eB, 
AAV.CAP-B10 and other previously engineered AAVs, were simulta-
neously injected intravenously into infant rhesus macaques. Each capsid 
variant contained a single stranded human FXN (frataxin) transgene 
fused to a hemagglutinin (HA) epitope tag under control of a CAG 
promoter (ssCAG-hFXN-HA). AAV-CAP-Mac was found to primarily 
transduce primate neurons in all lobes of the cortex, cerebellum, and 
multiple subcortical regions. IV injection of AAV-CAP-Mac out-
performed its parent capsid AAV9 as well as other previously engineered 
AAVs, including AAV-PHP.eB. Interestingly, AAV-CAP-Mac also out-
performed AAV-CAP-B10, suggesting genetic differences in the BBB 
even between Old World and New World monkeys. AAV-CAP-Mac, was 
also shown to have reduced tropism towards the liver across primate 
species. Further validating the utility of AAV-CAP-Mac for NHP 
research, delivering a mixture of fluorescent proteins achieved a sparse 
Golgi stain-like expression pattern that could facilitate large-scale 
studies of neuronal morphology. Again, in this experiment, 
AAV-CAP-Mac was seen to target neurons in the cortex and multiple 
subcortical regions including hippocampus, putamen, thalamus, and 
caudate, enabling reconstruction of both medium spiny neurons and 
cortical pyramidal cells (Fig. 2). Additional characterization was also 
performed in 8-month-old green monkeys. Injections of AAV-CAP-Mac 
(packaging ssCAG-eGFP) via IV delivery showed broad and strong 
neuronal expression in all lobes of the cortex and in various subcortical 

regions. Consistent with results from the rhesus experiments, 
AAV-CAP-Mac transduced a higher percentage of neurons than AAV9 in 
sampled cortex and subcortical regions. In summary, these novel AAV 
variants with tailored properties and tropism, offer greater CNS and/or 
PNS transduction than AAV9 in NHP. 

At present, in vivo characterization of AAV-CAP-Mac and AAV- 
MaCPNS1/2 has been limited to infant rhesus macaques (Chuapoco 
et al., in press). Higher vector doses could lead to increased immuno-
genicity due to preexisting neutralizing antibodies, thus, further char-
acterization of these capsids in adult animals is necessary and currently 
underway. Encouragingly, though, these variants show significantly 
lower transduction of the liver compared to AAV9, potentially mini-
mizing the risk of hepatotoxicity resulting from high systemic doses. 
Additionally, while these variants were engineered for systemic de-
livery, they may also be effective for local delivery. In vitro data from 
human-derived iPSCs supports the increased effectiveness of these AAVs 
over AAV9 (Chuapoco et al., in press), but further work is needed to test 
this, as well as the functional efficacy of the genetic cargo delivered by 
these novel AAVs. 

In addition to our efforts, several other groups have also engineered 
AAVs with unique features that are relevant to NHPs. Using an in-vivo 
directed evolution strategy, Dalkara et al. engineered a novel AAV 
variant, 7m8, that specifically transduces photoreceptors in the NHP 
retina via intravitreal injections (Dalkara et al., 2013). Through iterative 
refinement, researchers have developed newly engineered variants that 
induce higher expression in foveal cones than 7m8 in cynomolgus ma-
caques (Byrne et al., 2020). The in-vivo strategy DELIVER (directed 
evolution of AAV capsids leveraging in vivo expression of transgene 
RNA), has been used to identify muscle-tropic capsids that can be sys-
temically administered to transduce primate muscles with high effi-
ciency in cynomolgus macaques (Tabebordbar et al., 2021). Similarly, 
rAAV2-retro, which was developed for delivery of genetic cargo to 
retrogradely targeted cells, has also been tested for use in the primate 
brain (Bohlen et al., 2020) though see: (Cushnie et al., 2020)). 

4. AAV-based approaches for targeting specific cell-types in 
NHPs 

Developing tools to target specific cell-types to study their role in 
normal and disease circuitry remains a major challenge for primate 
neuroscience. Rodent models often rely on genetically-engineered Cre 
lines to achieve cell-type specificity. Unfortunately, primate gestational 
and maturational timelines preclude the widespread use of these genetic 
engineering approaches in primates (though see: (Drummer et al., 2021; 
Park et al., 2016; Sasaki et al., 2009; Tomioka et al., 2017)) so a different 
approach is needed. It is unlikely that capsid engineering alone will 
achieve the level of cell-type specificity required for NHP neuroscience 
research. This is due in large part because profiling AAV capsid variants 
generated by selection experiments is time-consuming and 
labor-intensive, and most remain uncharacterized (Zolotukhin and 

Fig. 2. (A) Representative image of MaCPNS1- 
mediated expression of eGFP and MaCPNS2- 
mediated expression of tdTomato in the cerebellum 
and brainstem of an infant rhesus macaque. (B) 
Multicolor labeling of neurons in cortex after IV 
administration of a cocktail of 3 fluorescent proteins 
(ssCAG-mNeonGreen, ssCAG-mRuby2, and ssCAG- 
mTurquoise2) packaged in AAV-CAP-Mac and (C) 
morphological reconstruction of a striatal medium 
spiny neuron in rhesus macaque (scale, 20 uM). Scale 
bars for A and B = 100 uM.   
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Vandenberghe, 2022). Although new molecular and computational 
tools, such as machine learning, might facilitate capsid profiling, these 
approaches also have limitations (Zolotukhin and Vandenberghe, 2022). 
Additionally, studies in NHPs suggest that novel transduction properties 
may not only arise from unique capsid binding properties, but also from 
uncharacterized capsid-promoter interactions (Bohlen et al., 2020). 
Therefore, it is likely that achieving cell-type specificity in NHPs will 
depend on a combination of BBB-crossing AAV capsid variants and 
regulatory elements. 

Cis-acting regulatory DNA elements, such as promoters and en-
hancers, are sequences of DNA that proteins bind to in order to initiate 
and increase the likelihood of transcription respectively (Levine, 2010; 
Wittkopp and Kalay, 2012). Thus promoters and enhancers can deter-
mine the level of transgene expression and the cells they are expressed 
in. Ubiquitous promoters, such as cytomegalovirus (CMV), chicken 
β-actin (CBA), human elongation factor 1 alpha (EF1α) or combinations 
of these such as CMV early enhancer/chicken beta actin (CAG), drive 
high levels of transgene expression in most cell-types (Haery et al., 
2019). However, high, widespread transgene expression is not always 
desired and can evoke immune responses to the transgene product 
(Perez et al., 2020; Samelson-Jones et al., 2020). Alternatively, cell-type 
specific promoters can be incorporated into the AAV cargo. These can be 
used, for instance, to target neurons (synapsin 1) or astrocytes (glial 
fibrillary acidic protein), or even more specifically dopaminergic neu-
rons, cerebellar Purkinje cells, or parvalbumin (PVALB) neurons in the 
brain (El-Shamayleh et al., 2017; Hoshino et al., 2021; Matsuzaki et al., 
2014; Nitta et al., 2017; Shinohara et al., 2016; Stauffer et al., 2016). 
Promoter sizes can range anywhere from ~100 bp to 1000 bp 
(Domenger and Grimm, 2019). Due to the AAV’s size limitation, ongoing 
efforts are focused on identifying shorter, and phylogenetically 
conserved, regulatory element sequences to direct cell-type specific 
transgene expression across species (de Leeuw et al., 2016; Domenger 
and Grimm, 2019; Matsuzaki et al., 2014; Nathanson, 2009). 

Recently, chromatin profiling techniques coupled with next- 
generation sequencing led to the discovery of putative enhancers that 
are less than 600 bp and can drive cell-type specific activation of genes 
(Buenrostro et al., 2013; Cusanovich et al., 2015; Fang et al., 2021; 
Grandi et al., 2022; Graybuck et al., 2021; Hrvatin et al., 2019; Mich 
et al., 2021; Nair et al., 2020; Preissl et al., 2018; Rubin et al., 2020; Visel 
et al., 2013; Vormstein-Schneider et al., 2020). A distal-less homeobox 
(Dlx) gene enhancer sequence that targets GABAergic interneurons in 
the telencephalon of several vertebrate species including mouse and 
marmoset was identified (Dimidschstein et al., 2016; A. T. Lee et al., 
2014; Zerucha et al., 2000). Additionally, the mouse ortholog of the 
Dlx5/6 enhancer (mDLX5/6), which is only ~400 bp, packaged into 
either AAV1 or AAV9, showed similar specificity for GABAergic in-
terneurons when locally injected into area V1 of the primary visual 
cortex of rhesus macaques (De et al., 2020). Mich et al. further optimized 
the human ortholog of the Dlx5/6 enhancer (hDLXI5/6i) by engineering 
a triple tandem of core elements taken from hDLXI5/6i and called it 
hDLX2.0 (Mich et al., 2021). AAV-PHP.eB containing hDLX2.0 upstream 
of a minimal beta-globin promoter and super yellow fluorescent 
protein-2 (SYFP2) reporter transduced GABAergic interneurons in ex 
vivo Macaca nemestrina cortical slice cultures and human neocortical 
slice cultures (Mich et al., 2021). Putative enhancers for targeting 
PVALB-expressing interneurons have similarly been identified, pack-
aged in AAV-PHP.eB and tested in mice via retro-orbital injections, and 
in marmoset and macaque via local or intraparenchymal injections 
(Lawler et al., 2022; Mich et al., 2021; Vormstein-Schneider et al., 
2020). These enhancers either targeted PVALB interneurons broadly or 
specific sub-classes of PVALB interneurons in the neocortex in both 
mouse and NHP. To identify regulatory elements that can drive faithful 
expression across species using AAV vectors, the selection method has 
largely focused on sequences that are conserved across species. How-
ever, Mich et al. reported that certain PVALB enhancer sequences pre-
sent in the open chromatin analyses of the human neocortex but not in 

the mouse neocortex, were still able to drive selective expression in 
PVALB neurons in the mouse brain (Mich et al., 2021; Vorm-
stein-Schneider et al., 2020). Thus, to minimize the number of experi-
mental animals used for in vivo screening, it may be advantageous to 
develop machine-learning classifiers that can identify DNA sequence 
patterns important for driving species-agnostic cell-type specific acti-
vation (Lawler et al., 2022). 

Single-cell and single-nucleus transcriptomics studies of the rodent 
and primate brain have revealed the molecular complexity and diversity 
of cell-types present based on their gene expression profiles (Hodge 
et al., 2019; Tasic et al., 2016, 2018; Zeisel et al., 2015). In the primary 
motor cortex alone, there are potentially 45 conserved cell-types among 
mouse, marmoset and human (Callaway et al., 2021). Only once a 
cell-type has been molecularly defined can researchers begin to identify 
DNA regulatory elements that are required for cell-type specific gene 
activation, and guide the development of tailored targeting strategies for 
treatment and functional interrogation. We have shown that broad CNS 
transduction in NHP is possible using the ubiquitous CAG promoter in 
our recently engineered vectors (AAV-CAP-Mac, AAV-MaCPNS1 and 
AAV-MaCPNS2) (Chen et al., 2022; Chuapoco et al., in press). These 
variants, which show comparatively higher neuronal transduction than 
AAV9 in NHPs, can be used to screen regulatory elements that specif-
ically target neuronal subpopulations. One caveat of this approach is 
that injecting multiple AAVs with different enhancer and promoter el-
ements in the same animal may cause interference between the regu-
latory elements, resulting in a loss of specificity compared to 
independent delivery (Mehta et al., 2019; Pouchelon et al., 2022). This 
may confound interpretation of pooled screens of putative regulatory 
elements. 

Further cell- and tissue-type specificity can be achieved by incor-
porating microRNA (miRNA) target site sequences (~22 nucleotides) 
into the 3’ untranslated coding region of AAVs. These bind to comple-
mentary miRNA sequences wherever they are expressed and inhibit 
mRNA expression. This approach has been used to detarget transgene 
expression from primary sensory neurons (miR183) and liver (miR122) 
to reduce dose-dependent toxicity in NHPs (Hordeaux et al., 2020; 
Kochunov et al., 2015). Recently, a database of miRNA expression across 
196 primary cell-types was generated, enabling the potential testing of 
numerous combinations of miRNA-binding transgene cassettes (Patil 
et al., 2022). With spatial transcriptomics we can characterize the cell 
type-specific expression of various combinations of 
systemically-delivered AAV capsids and cargo, with the goal of 
expanding the gene delivery toolkit for NHPs (Jang et al., 2023). 

5. Future directions 

The effective delivery of sensors, effectors, and reporters for circuit 
tracing and manipulation, largely depends on the vector used. However, 
differences in brain size and immune function have hampered the 
widespread adoption of genetic technology in monkeys. Thus, the en-
gineering of more efficient and specific viral vectors to target the CNS in 
NHPs addresses many of the challenges that have inhibited progress in 
translating rodent disease biology to better therapies and therapeutic 
approaches. Here, we review newly engineered systemic capsid variants 
that address these challenges. Specifically, using an adapted, cross- 
species directed evolution approach, our group has identified new var-
iants that can transduce neuronal cells in CNS and PNS via peripheral 
injection in multiple NHP species commonly used in research. 

In marmosets, AAV-CAP-B10 and AAV-CAP-B22, variants of AAV- 
PHP.eB, were identified to have enhanced CNS transduction compared 
to AAV9. In both marmosets and rhesus macaques, AAV-MaCPNS1 and 
AAV-MaCPNS2 variants transduced cells in both CNS and PNS. This may 
be particularly useful for studies where widespread transgene expression 
is desired as infusions in NHPs typically require multiple sites of injec-
tion to cover whole areas of tissue; however, this remains to be tested in 
relation to distributed brain function and/or behavior. In both rhesus 
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macaques and green monkeys, AAV-CAP-Mac was found to transduce a 
higher percentage of neurons than AAV9. Importantly, these variants 
show significantly lower transduction in the liver compared to AAV9, 
thereby minimizing the risk of hepatotoxicity. 

Still, while these novel AAVs may provide a new and necessary tool 
for delivering genetic cargo into the primate brain, many technical is-
sues still remain. Below we briefly discuss these issues.  

1. Achieving cell-type specificity in NHPs. For decades, studies in NHPs 
have relied on lesions, reversible inactivation, and electrophysiology 
to elucidate the role of specific regions in a particular function (Balan 
et al., 2019; Dal Monte et al., 2015; Lak et al., 2014; Rudebeck et al., 
2013). While this has provided invaluable insight into distributed 
circuits that underlie behavior, these studies are limited by their 
cell-type agnostic nature. Lesioning and reversible inactivation 
generally impact all cells in a particular region. In addition, lesion 
studies have resulted in conflicting reports on observed behaviors 
within the same region of the brain, often due to unintended damage 
to fibers of passage (Rudebeck et al., 2013). Similarly, electrophys-
iological recording techniques cannot differentiate molecular 
cell-types, and rely on electrophysiological-specific characterization 
(e.g. early-firing, late-firing, ramping, etc.). For example, in the 
ventral tegmental area, a minority of neurons share the same elec-
trophysiological properties as dopamine neurons, leading to ques-
tions on whether some recordings have been misattributed to 
dopamine (Ungless and Grace, 2012). To address this issue, rodent 
studies have used TH-Cre mice to target dopamine-expressing VTA 
neurons for the expression of sensors and effectors (Bariselli et al., 
2016; Lindeberg et al., 2004). However, in NHPs, Cre-lines do not yet 
exist or are not widely used. It is unlikely that capsid engineering 
alone will enable cell-type specificity. Instead, it is likely that a 
combination of capsid and DNA regulatory elements will achieve 
cell-type specificity. To this end, AAV-Cap-Mac and 
AAV-MaCPNS1/2 can be used to screen regulatory elements that 
specifically target neuronal subpopulations.  

2. Effective delivery and functional efficacy of genetic cargo. Advances in 
genetic cargo, like opsins and DREADDs, have been critical in dis-
secting circuits that are thought to contribute to disease – in rodents. 
However, these techniques have not been widely adopted in NHPs 
because of difficulties in delivering genetic cargo efficiently into the 
primate brain. Currently, only a few published studies in NHPs have 
demonstrated successful delivery of opsins, with AAV5 and AAV9 
being amongst the most commonly used vectors (Tremblay et al., 
2020). Moreover, outcome measures-anatomy, physiology, and 
behavior in these studies-vary greatly (Bliss-Moreau et al., 2022). For 
example, AAV5 has been shown to preferentially target some brain 
regions but not others (Roseboom et al., 2021). Still, a major hurdle 
remains in determining the extent in which systemic delivery can 
express effector-cargo in a sufficient proportion of cells to affect 
behavior. Even so, infecting a small proportion of cells can still help 
us better understand the contributions of a small number of cells on 
behaviors as the functional efficacy of sensor-cargo does not neces-
sitate a large proportion of cells. Currently, the effective delivery and 
functional relevance of sensors and effectors have not been tested 
using AAV-CAP-Mac or AAV-MaCPNS1/2. Further work is needed to 
show the functional efficacy of the genetic cargo delivered by these 
novel AAVs. 

Understanding the emergence or origins of brain-based disease re-
quires coordinated cross-species research. To this end, NHP models are 
particularly important because of their shared biology with humans. 
However, tools for interrogating anatomical pathways and functional 
circuits will need to be translated for widespread use in NHPs. While the 
vectors presented here address many common technical challenges seen 
in NHPs, there is a continued need for more efficient and specific AAVs. 
We hope that further optimization of these vectors can lead to more 

efficient delivery and ultimately, lead to new tools for the study of the 
primate brain and the development of new treatments for brain-based 
disorders. 
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