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Abstract
Anxiety disorders affect millions of people worldwide and present a challenge in neuroscience research because of their 
substantial heterogeneity in clinical presentation. While a great deal of progress has been made in understanding the neuro-
biology of fear and anxiety, these insights have not led to effective treatments. Understanding the relationship between phe-
notypic heterogeneity and the underlying biology is a critical first step in solving this problem. We show translation, reverse 
translation, and computational modeling can contribute to a refined, cross-species understanding of fear and anxiety as well 
as anxiety disorders. More specifically, we outline how animal models can be leveraged to develop testable hypotheses in 
humans by using targeted, cross-species approaches and ethologically informed behavioral paradigms. We discuss reverse 
translational approaches that can guide and prioritize animal research in nontraditional research species. Finally, we advocate 
for the use of computational models to harmonize cross-species and cross-methodology research into anxiety. Together, 
this translational neuroscience approach will help to bridge the widening gap between how we currently conceptualize and 
diagnose anxiety disorders, as well as aid in the discovery of better treatments for these conditions.
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Introduction

Anxiety disorders are characterized by debilitating, extreme, 
and chronic experiences of fear and anxiety. They are among 
the most prevalent psychiatric disorders; estimates suggest 
that more than one in four people will experience an anxi-
ety disorder in their lifetime (Bandelow & Michaelis, 2015; 
Kessler et al., 2012). Anxiety disorders often are comor-
bid with other disorders, including depression, substance 
abuse, eating disorders, and premenstrual dysphoric disor-
ders (Merikangas & Swanson, 2009; Swendsen et al., 2010; 
Yen et al., 2020). In short, these disorders are one of the 
largest contributors to days lost to disability and impose an 

extreme burden on public health (Rice & Miller, 1998; Yang 
et al., 2021b).

Despite extensive research in this area, existing cogni-
tive, behavioral, and/or pharmacological treatments for anxi-
ety disorders remain suboptimal. Although many patients 
respond to existing treatments, responses often are incom-
plete, failing to fully ameliorate symptoms, even when 
treatments are combined (Carpenter et al., 2018; Slee et al., 
2019; Szuhany & Simon, 2022). Between one-third to one-
half of patients do not respond to front-line treatments, and 
often less than half of patients ever fully achieve remission 
(Bandelow et al., 2014; Bereza et al., 2012; Pollack et al., 
2008). These suboptimal outcomes underscore the need for 
basic science to produce a refined understanding of the bio-
logical mechanisms that give rise to anxiety disorders and 
motivate new treatments.

Anxiety disorders are characterized by the subjective 
experience of fear and anxiety, but there is substantial het-
erogeneity that persists over time and across contexts in 
the outward presentation of anxiety disorders. Basic sci-
ence in preclinical animal models is critical for uncover-
ing causal biological factors but often is limited by a focus 
on a restricted set of behaviors across a limited number of 
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contexts. Here, we discuss the heterogeneity of anxiety dis-
orders, how phenotypic heterogeneity relates to our current 
understanding of fear- and anxiety-related neurocircuitry 
in animal models, and highlight emerging approaches that 
can help bridge the gap between basic and clinical science. 
We argue that a refined understanding of the neurobiology 
of anxiety disorders necessitates a translational neurosci-
ence approach that incorporates a broader set of assays and 
the utilization of computational modeling. A more com-
plete understanding of these disorders will be a crucial step 
toward the development of effective treatments to alleviate 
suffering in patients.

Defining fear and anxiety

The central, defining feature of all anxiety disorders is the 
extreme experience of anxiety. Unfortunately, there is little 
evidence that people’s use of the word “anxiety” is consist-
ent or uniquely associated with a specific biological state. In 
fact, many people use other words, such as “fear,” “afraid,” or 
“worry” when describing their anxieties. Optimally diagnos-
ing and treating anxiety disorders implicitly relies on a shared 
understanding of emotion, requiring clinicians and patients 
to use a consistent definition of these words. However, the 
lack of objective definitions for the terms “fear” and “anxi-
ety” persist (Shackman & Fox, 2016). Models that redefine 
these common lexical terms have been proposed, with “fear” 
as a response to acute and phasic threats, and “anxiety” as 
a response to sustained and uncertain threats. (Davis et al., 
2010). However, the evidence that these different emotions 
are dissociable at the level of phenomenology, physiology, 
behavior, and brain remains unclear (Shackman & Fox, 2016).

The potential mismatch between the definitions of anxi-
ety-relevant words across patients, clinicians, and scientists 
represents a major problem for understanding the heteroge-
neity of disorder. If scientists are using the same words in 
different ways, this can provide a major barrier to the trans-
lation of their findings. For example, the use of the phrase 
“fear-conditioning” for the study of tone-shock learning in 
animals implies that these findings are directly relevant to 
the understanding of the human experience of “fear” but not 
“anxiety.” Over the years, it has become increasingly clear 
that tone-shock pairing in rodents is insufficient to understand 
the complete phenomenology of fear (LeDoux, 2014). How-
ever, as we will discuss below, the neural circuits involved in 
tone-shock conditioning are implicated in anxiety disorders 
by other assays of fear- and anxiety-relevant behaviors.

We use the undifferentiated term “fear and anxiety” to 
refer to the collective set of affective states associated with 
distress in anxiety disorders, which often are experienced in 
combination with persistent worry, physiological changes, 
and avoidance behavior. The intentional grouping of these 

terms can lead to clearer insights into the heterogeneity of 
anxiety disorders by avoiding a false dichotomy and incor-
porating relevant information from a variety of sources. Ulti-
mately, this approach promises to allow scientists to “carve 
nature at its joints” and better parcellate the heterogeneity 
within the experience of fear and anxiety.

Heterogenous presentation of anxiety 
disorders

The current categorical approach to defining anxiety dis-
orders raises challenges to advancing our understanding of 
the disorder. The DSM-5 currently distinguishes 12 differ-
ent anxiety-related disorders. Each disorder is character-
ized by excessive and persistent worry but differentiated 
by specific diagnostic criteria and a diverse range of trig-
gering stimuli. Ultimately, categorical diagnoses rely on 
self-reported symptom profiles that are expressed across a 
variety of contexts that are not explicitly linked to biology 
or treatment efficacy. Structured clinical assessments (First 
& Caban, 2010) and efforts to develop empirical taxonomies 
(Kotov et al., 2022) can help to address these issues, but they 
have yet to be adopted into standard clinical settings. Thus, 
patients with different disorders can respond to the same 
treatment (“one-to-many”), whereas patients with the same 
disorder may not (“many-to-one”).

Importantly, different anxiety diagnoses can share symp-
tom profiles. For example, patients with social anxiety and 
patients with agoraphobia, two distinct anxiety disorders as 
defined by the DSM-5, may show the same signs of distress 
(e.g., racing heart, sweating, nausea, shortness of breath) 
(Fig. 1) in response to different stimuli. As such, it is dif-
ficult to distinguish patients based on their overt expression 

Fig. 1  Heterogeneity in the presentation of anxiety disorders. A sche-
matic depicting a subset of anxiety disorder symptoms (left) and how 
a subset of patients can present with some but not all symptoms. Each 
patient can have a different symptom profile that can be shared with 
patients with distinct diagnoses. GAD = generalized anxiety disorder; 
SAD = social anxiety disorder; PD = panic disorder
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of anxiety. This could present a problem in selecting opti-
mal treatments. If a treatment is targeted at brain systems 
required for the symptom, and not specifically linked to the 
source of the anxiety itself, the same treatment could be 
equally effective in two individuals with different disorders.

In contrast, anxiety disorders can be highly heterogeneous 
in their presentation within a diagnostic category. There is 
substantial variability in clinical presentation across indi-
viduals (Altemus et al., 2014; Galatzer-Levy & Bryant, 
2013; Lenze & Wetherell, 2011) (Fig. 1), and when using 
the current DSM-5 guidelines, there are nearly endless com-
binations of symptom profiles that may qualify for the same 
anxiety disorder diagnosis. This symptomatic heterogeneity 
suggests a corresponding heterogeneity in the underlying 
neural circuitry of these symptoms, which has likely con-
tributed to the ineffectiveness of one-size-fits-all treatment 
approaches. Thus, patients who present with the same dis-
order may not respond to the same treatment.

In summary, anxiety disorders are clearly heterogeneous 
and multifaceted. As such, our approach to understanding, 
diagnosing, and ultimately treating anxiety disorders must 
be as well (Akil et al., 2010). The development of new treat-
ments will require acknowledging that relationships between 
biology and anxiety disorder symptoms can be both “one-to-
many” and “many-to-one.”

Identifying the brain regions involved 
in anxious temperament and anxiety 
disorders

Perhaps unsurprising given the heterogeneity of anxiety dis-
orders, human neuroimaging research has not consistently 
identified a single region as the sole contributor to feelings 
of fear and anxiety. Instead, studies have identified a distrib-
uted neural circuit that is associated with many aspects of 
anxiety disorders. This distributed fear and anxiety circuit 
includes a broad array of subcortical and cortical structures, 

including the amygdala, bed nucleus of the stria terminalis 
(BST), hypothalamus, hippocampus, anterior cingulate cor-
tex, insula, and the medial prefrontal cortex (Chavanne & 
Robinson, 2021; Etkin & Wager, 2007; Shin & Liberzon, 
2010). Although a full review of the specific contribution of 
each of these regions is outside of the scope of this review, it 
is important to note that the brain is not equipotent, and each 
of these regions perform distinct computations in concert to 
give rise to the holistic experience of fear and anxiety.

Importantly, these studies and others emphasize a relation-
ship between acute anxiety, dispositional (or trait) anxiety, 
and anxiety disorders. For example, many of the same brain 
regions that have been implicated in pathological anxiety also 
are activated during paradigms designed to elicit anxiety in 
control subjects (Chavanne & Robinson, 2021), suggesting 
that anxiety disorders may arise from maladaptive application 
of these systems to daily life. In support of this, individuals 
with higher levels of dispositional anxiety show heightened 
response to stressors and are more likely to develop anxi-
ety disorders (Clauss & Blackford, 2012; Hengartner et al., 
2016; Shackman et al., 2016). These findings suggest that 
similar neural processes contribute to both pathological and 
nonpathological anxiety. Furthermore, they highlight that 
studying pathology is not essential to gain insights into the 
function of these regions in anxiety disorders.

Research designed to understand the specific contribu-
tions of each brain region implicated in fear and anxiety 
will require animal models (Bale et al., 2019). Animals can-
not reliably report their subjective experience, ultimately 
necessitating additional measures and the study of nonpatho-
logical anxiety. In humans, subjective feelings of fear and 
anxiety emerge from or are related to behaviors, distributed 
neural circuits, specific cell types, molecules and neurotrans-
mitters, and genes and gene regulation (Grogans et al., 2023) 
(Fig. 2). Disruptions in any of these systems could lead to 
extreme feelings of fear and anxiety, and as such, optimal 
treatments will require comprehensive approaches that target 
each of these levels of analysis.

Fig. 2  Anxiety research spans many disciplines. Animal models 
provide a framework for examining the neurobiology that gives rise 
to anxiety and fear, and unique animal models are better suited to 

answer specific questions at different levels of analysis. Computa-
tional models offer an opportunity to bridge the gap between different 
models and levels of analysis
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Next, we highlight the multidisciplinary animal modeling 
approaches that have contributed to our understanding of 
the neurobiology of anxiety disorders and argue that the 
next generation of translational anxiety research must work 
across species, levels of analysis, and disciplines to work 
toward more effective treatments.

Decomposing the distributed neural circuits 
that underlie threat responding

Animal models are uniquely well-suited to investigate cau-
sality and aid in our understanding of the threat-relevant 
computations within specific brain regions. The ability to 
detect and respond to threats is largely conserved across 
species, and the ubiquity of flight and freezing behaviors 
in threatening contexts highlights their adaptive success 
in threat-responding (Roelofs, 2017). Cross-species simi-
larities in threat detection and responding form the basis 
of translational efforts to understand the neurobiology of 
fear and anxiety in animal models. Researchers use a wide 
variety of ethologically relevant paradigms to assess threat-
responding in rats and mice—the most commonly used 
animals in neuroscientific research (Calhoon & Tye, 2015; 
Haller et al., 2013; Hickman et al., 2017). Although animals 
cannot report their experience, focusing on ethologically-
relevant threat responding is supported by pharmacological 
studies that show responsiveness to drugs that decrease anxi-
ety in humans (Borsini et al., 2002) (although see Box 1). 
Together, this body of work supports the notion that an 
understanding of the neurobiology of threat perception and 
responding in animals can guide our understanding of the 
mechanisms that give rise to extreme and chronic anxiety 
in humans.

Rodent research confirms observations in humans that 
threat-responding is instantiated across multiple threat-rel-
evant brain regions that act in concert or competition with 
each other to initiate adaptive defensive behaviors. Similar to 
humans, this network of threat-responsive regions includes 
the amygdala, BST, hypothalamus, hippocampus, prefrontal 
cortex (PFC), and periaqueductal gray (PAG), among other 
regions (Adhikari, 2014).

Rodent models can extend human research to identify the 
precise neurobiological mechanisms that underlie specific 
threat-responses in certain contexts. For example, in studies 
of tone-shock conditioning in rodents, the amygdala initiates 
freezing behavior in response to a conditioned tone stimulus. 
Learning is thought to occur in amygdala neurons across the 
basolateral nucleus of the amygdala (BLA) and the central 
nucleus of the amygdala, lateral part (CeL). These regions 
induce freezing via projections to the central nucleus of the 
amygdala, medial part (CeM). The CeM, in turn, inhibits local 
interneurons in the ventrolateral PAG (vlPAG), which through 

feed-forward inhibition results in excitation of neurons in the 
medulla that initiate freezing through spinal cord and fore-
limb muscles (Tovote et al., 2016). This represents decades of 
research, designed to understand a specific circuit that initiates 
fear- and anxiety-related freezing in a specific learned context, 
and highlights multiple places where insults and vulnerabili-
ties could lead to increased risk for anxiety disorders.

Importantly, animal models have shown that not all 
threats are processed the same way in the brain. The neu-
ral responses induced by threat are highly unique to the 
stimulus (Sanford et al., 2017), and the same cells or brain 
regions can be implicated in the execution of a variety 
of behaviors (Deng et al., 2016). For example, while the 
CeM to PAG projections are critical for freezing during 
tone-shock conditioning (Tovote et al., 2016), distinct pro-
jections from the medial superior colliculus to PAG initi-
ate escape from a looming shadow (Evans et al., 2018). 
Specifically, dorsal PAG neurons can be activated by mSC 
projections, which excite the vlPAG interneurons to inhibit 
freezing and facilitate escape behaviors (Tovote et  al., 
2016). These data highlight partially overlapping neural 
circuits in both freezing and escape behaviors (Fig. 3) and 
highlight the fact that not all behaviors can be implemented 
at the same time—an animal cannot escape while freezing.

Thus, competition within and across fear- and anxiety-
related brain circuits is critical for selecting the appropriate 
emotional response (Holley & Fox, 2022). This competition is 
not unique to the PAG. For example, distinct sets of mutually 
inhibitory cells in the CeL compete to determine the appropriate 
response (Fadok et al., 2017; Isosaka et al., 2015). Specifically, 
stimulation of somatostatin (SST) and corticotropin releasing 
hormone (CRH) positive cells can initiate freezing and escape, 
respectively. Because these cells are mutually inhibitory, this 
provides a potential mechanism for competition between com-
peting responses. The microcircuitry of the CeA allows for this 
region to induce multiple, distinct, survival-relevant behaviors 
(Holley & Fox, 2022; Moscarello & Penzo, 2022).

Together, these data reveal how different types of cells 
collaborate and compete to initiate threat-responding across 
multiple contexts. This level of understanding is only pos-
sible with the help of animal models, which have illuminated 
a complex network of threat-responsive and heterogenous 
brain regions and suggest many insights into potential points 
of intervention to treat anxiety disorders. For example, dis-
ruption at various cell types or multiple nodes within the 
circuit discussed above could lead to altered freezing behav-
iors, underscoring the limitations of a “one-size-fits-all” 
treatment for anxiety disorders.

These data highlight two major challenges for trans-
lational research: 1) translating findings from rodents to 
humans, and 2) expanding and identifying the appropriate 
animal models that are mostly likely to be relevant to under-
standing the heterogeneity of fear and anxiety in humans.
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Translating neuroscience findings 
from animals to humans

Animal models can be used to develop testable hypotheses 
about the mechanisms of fear and anxiety in humans. Ulti-
mately, because we cannot say with certainty how an ani-
mal is feeling, work in humans must validate the role for 
specific microcircuits in the subjective experience of anxi-
ety (LeDoux & Brown, 2017; LeDoux & Pine, 2016). For 
example, whether the same cells activated during freezing 
in a tone-shock paradigm are the same cells that contrib-
ute to subjective feelings of anxiety in humans is uncertain. 
More generally, the causal contribution of a specific cell 
type during a particular assay in a rodent does not imply 
that human fear and anxiety relies on this same circuit. To 
this end, experiments that: 1) leverage defensive paradigms 
adapted from animal research, and 2) build on the known 
mechanisms of anxiety-related behavior in rodents will be 
critical for developing targeted interventions for anxiety-
related psychopathology.

Research in this area is ongoing and has begun to dem-
onstrate the correspondence between humans and nonhu-
man animals. For example, theories of context-dependent 
defensive behavior in rodents have been instrumental in 
motivating human work focused on the threat-imminence 
continuum, which when used in animals elicits a diversity 
of threat-responsive behaviors and neural activation patterns 
based on the proximity of the threat (Blanchard et al., 2011; 
Fanselow, 1994). In a virtual avoidance paradigm, partici-
pants avoid a virtual predator that can chase, capture, and 
cause pain in the form of shocks (Mobbs et al., 2007). Mir-
roring animal findings (Evans et al., 2018; Kim et al., 2018), 
the patterns of brain activity in humans engaged in this task 
fluctuate with the proximity and likelihood of the threat. 
Specifically, more frontal regions are engaged during the 

first encounter with the virtual predator, when the threat is 
more distal. There is a shift toward increased activity in the 
midbrain PAG when threat is near and the subject engages in 
avoidance strategies (Mobbs et al., 2007). This paper repre-
sents a thoughtful extension of rodent work into human fear 
and anxiety and demonstrates the utility of a videogame-like 
assay for translating animal assays to humans.

Because the cells involved in fear and anxiety are distrib-
uted across the brain, methods that predict symptoms solely 
on a single brain region will not likely yield clinically rel-
evant findings. However, researchers can test hypothesized 
functional relationships between regions by examining the 
patterns of BOLD activation across multiple brain regions 
and stimuli that elicit different adaptive behavioral responses 
(i.e., using fMRI measures of functional connectivity). For 
example, animal studies demonstrate strong reciprocal pro-
jections between the Ce and BST (Oler et al., 2017) that are 
involved in sustained anxiety (Asok et al., 2018). Functional 
connectivity in rhesus monkeys shows that individual dif-
ferences in a stable and heritable anxiety phenotype were 
associated with rsfMRI measures of Ce-BST functional con-
nectivity (Fox et al., 2018), suggesting that these projections 
are relevant to human fear and anxiety. This hypothesis, and 
other similar hypotheses that implicate projections from 
one region to another, can be tested in humans by using 
rsfMRI, but has been hindered by the fact that these regions 
are small, and many scanners lack the temporal and spa-
tial resolution needed to parse these microcircuits. Ongoing 
work using high-field fMRI has begun to better assess the 
connectivity between these regions with increased anatomi-
cal precision using high-resolution imaging at 7 T (Hofmann 
& Straube, 2021; Torrisi et al., 2019; Weis et al., 2019). 
Additional methods using lower resolution imaging have 
been used to parcellate these small subregions, including dif-
ferentiating the amygdala based on its connectivity patterns 

Fig. 3  Diagram of circuit mechanisms that can contribute to the het-
erogeneity of fear and anxiety measures. Mutually inhibitory net-
works in CeL can trigger distinct populations of CeM output neurons 
that project to PAG and other downstream regions (such as the dorsal 

vagal nerve) to initiate the varied responses that are used in animal 
studies of fear and anxiety. CeL = central amygdala, lateral; CeM = 
central amygdala, medial; dPAG = dorsal periaqueductal gray; vlPAG 
= ventrolateral periaqueductal gray
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with other regions and hand-drawing ROIs (Pedersen et al., 
2020; Sylvester et al., 2020; Tillman et al., 2018). Thus, high 
resolution may not be required to test projection-specific 
hypotheses about limbic microcircuits derived from animal 
models. This avenue of research promises to identify pro-
jection-specific contributions to fear and anxiety and is ripe 
for additional research.

In addition to projection-specific hypotheses, the within-
region heterogeneity in specific brain regions poses a chal-
lenge for conventional neuroimaging methods used in human 
subjects. Neuroimaging voxels reflect a diverse population 
of hundreds of thousands of neurons (Logothetis, 2008) and 
are not precise enough to dissect the specific contributions 
of distinct neural cell types. Yet, as outlined above, within 
the amygdala there are multiple populations of mutually 
inhibitory cell-types. Consequently, the measured BOLD 
signal constitutes the activity of competing microcircuits. 
Critically, different cell types are not uniformly distributed 
within regions (Beyeler et al., 2018; McCullough et al., 
2018), and different voxels likely reflect distinct composi-
tions of Ce cell types. Because of this within-voxel hetero-
geneity, multivoxel pattern analysis (MVPA) can provide 
an approach for testing hypotheses relating to distinct func-
tional patterns associated with different cell-types being dif-
ferentially involved in specific processes in humans (Norman 
et al., 2006). More specifically, researchers translating find-
ings from rodent models can leverage this across-voxel het-
erogeneity to design experiments that might reveal distinct 

processes within a region. For example, if each CeL voxel 
contains a distinct mixture of SST and CRH neurons, the 
pattern of activity should reflect these mutually inhibitory 
local circuits. Based on the mutually inhibitory SST and 
CRH neurons in Ce reviewed, we hypothesize that Ce pat-
terns would predict the use of different defensive strategies 
(i.e., freezing vs. escape) (Fig. 4). As discussed below, this 
work can form the foundation for neurobiologically derived 
computational models.

More generally, MVPA can detect patterns of activity 
across multiple voxels, which occur independently of the 
expression of measurable behaviors (Polyn et al., 2005). This 
technique therefore can be used to infer cognitive states of the 
subject and could be used to distinguish brain states that con-
tribute to the subjective feeling of fear and anxiety from those 
that represent other aspects of the task (e.g., physiological 
responses)—a crucial step in translational work. Using this 
approach, researchers have identified underlying neural disso-
ciations between the subjective feeling of fear and its physi-
ological correlates (i.e., skin conductance), emphasizing that 
the experience of fear is not solely the result of fear-related 
physiological activity (Taschereau-Dumouchel et al., 2020). 
We suggest that MVPA can be used to identify patterns of 
brain activation associated with the subjective experience of 
fear and anxiety, which provides a path to understand the 
relationship between defensive circuits identified in animal 
models and the experience of fear and anxiety in human 
populations.

Fig. 4  Model-based MVPA. A schematic of how different models of 
Ce function based on experiments in rodents can make predictions 
about the pattern of activation in human fMRI studies. Because the 
distribution of cell types contributing to different behaviors are not 

uniformly distributed across voxels, different behaviors are hypoth-
esized to be associated with differences in the pattern of BOLD 
response across Ce voxels. Ce = central amygdala
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Capturing fear and anxiety across species: 
The value of nontraditional animal models

Not all aspects of anxiety disorders are equivalently mod-
eled in all nonhuman animals, and not all anxiety-relevant 
brain regions are equivalently conserved across species. It 
remains possible that even a complete understanding of the 
brain of a standard laboratory mouse will be insufficient to 
recapitulate similar circuits in humans. Thus, it is critical 
that we consider additional species that are better suited 
to understand the variety of biological processes that give 
rise to specific symptoms implicated in the heterogeneity of 
human anxiety. Different animal species possess their own 
unique characteristics that make them appropriate to model 
unique aspects of fear and anxiety.

Other rodent species may be better suited to studying 
specific aspects of fear and anxiety in nonhuman animal 
models beyond the most commonly used laboratory mice 
and rats (Mus musculus and Rattus norvegicus, respectively) 
(Hickman et al., 2017). For example, in humans there are 
well-defined relationships between the menstrual cycle and 
anxiety (Kuehner & Nayman, 2021; Yen et al., 2020). Stand-
ard laboratory rodents have an estrous cycle (Kundakovic 
& Rocks, 2022), which has been shown to influence fear 
learning and extinction (Milad et al., 2009; Zeidan et al., 
2011). While the rodent estrous cycle is similar to the human 
menstrual cycle, there are several key differences. Primarily, 
estrous cycles do not include the cyclical shedding of the 
uterine lining in the absence of pregnancy (menses), which 
is under the control of the hypothalamic pituitary gonadal 
(HPG) axis (Hall, 2019). Menstrual irregularities, which are 
mediated by the HPG axis, are associated with increased 
depression symptoms (Bisaga et al., 2002; Toffol et al., 
2014), necessitating a different model to better understand 
the relationship between the menstrual cycle and anxiety in 
humans. Additionally, estrous and menstrual cycles differ in 
their lengths (4–5 days in rodents vs. ~28 days in humans). 
Animal models that more accurately reproduce the timing 
of the menstrual cycle are important, because the effects 
of gonadal hormones are often temporally dependent and 
can be long-lasting (Galea et al., 2017). Recent work has 
demonstrated that the spiny mouse (Acomys cahirinus) has a 
menstrual cycle (Bellofiore et al., 2017), providing a unique 
animal model in which to understand hormone-related psy-
chopathological symptoms in the laboratory (Bellofiore 
et al., 2019).

Another limitation of standard laboratory rodents is 
the condensed developmental timeline. In humans, there 
are childhood risk-factors for the development of anxiety 
disorders (Cabral & Patel, 2020), as well as a period of 
increased incidence during adolescence (Beesdo et al., 2007). 

Laboratory mice are considered adults by the age of postna-
tal Day 60, with a brief adolescent period lasting approxi-
mately 3 weeks (Drzewiecki & Juraska, 2020). Therefore, 
experimental setups that require repeated exposure or training 
cannot be performed in standard laboratory rodents. Again, 
other rodent models may be better suited to understanding 
these aspects of fear and anxiety. For example, the California 
mouse (Peromyscus californicus) has an extended adolescent 
period and reaches adulthood at postnatal Day 90, making 
this animal well-suited to understanding the changes that 
increase adolescent-onset anxiety (Wright et al., 2023).

Studying the longer-term changes that occur throughout 
childhood that put an individual at risk for anxiety disorders 
will require animal models that have a protracted develop-
mental timeline. To this end, studying nonhuman primates, 
such as rhesus macaques (Macaca mulatta), can be par-
ticularly useful. Researchers have established similarities 
between early-life anxious and inhibited temperament across 
humans and rhesus macaques (Fox & Kalin, 2014; Kenwood 
& Kalin, 2021), which allow for the study of the neurobiol-
ogy that gives rise to the emergence of anxiety disorders in 
humans. This work has revealed similarities between humans 
and rhesus macaques in the distributed brain network asso-
ciated with individual differences in temperament (Fox & 
Shackman, 2019; Oler et al., 2010), identification of brain 
regions that likely mediate the inherited aspects of tempera-
ment (Fox, Oler, Shackman et al., 2015a; Fox et al., 2018), 
and initial suggestions about the molecular (Fox et al., 2019; 
Kalin et al., 2016; Kenwood, Souaiaia et al., 2023b; Kovner 
et al., 2020) and genetic (Fox et al., 2021) mechanisms that 
underlie the early-life risk to develop anxiety disorders. This 
work has been instrumental to drawing attention to the cen-
tral extended amygdala, encompassing the Ce and the BST 
in anxiety and anxiety disorders (Fox et al., 2018; Fox, Oler, 
Tromp, et al., 2015b; Fox & Shackman, 2019).

Finally, when considering cross-species studies, research-
ers must consider how the biological processes underlying 
threat-processing have been shaped by species-specific evo-
lutionary pressures over millions of years. The brain circuits 
that underlie fear and anxiety in humans have continued to 
evolve and have been incorporated into a highly integrated 
network of brain regions. This is evidenced by increasingly 
specialized sensory cortices (Kaas, 2008), an expanded pre-
frontal cortex (Donahue et al., 2018; Smaers et al., 2017), as 
well as alterations in the organization and cellular composi-
tion of individual brain regions (Chin et al., 2023; Gibbs 
et al., 2007; Krienen et al., 2020; Schmitz et al., 2022). 
These evolutionary changes likely create unique aspects in 
cognitive processing that may influence the experience of 
fear and anxiety (Pine et al., 2021). As such, it is critical 
that we do not take brain-behavior homology for granted.
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Nonhuman primates (NHPs) diverged from humans much 
more recently than rodents (Nei et al., 2001; Stewart & Diso-
tell, 1998), thus providing an important translational model 
to verify and extend brain-behavior homology as it relates 
to fear and anxiety (Campos et al., 2023; Fox & Shackman, 
2019; Roberts & Clarke, 2019). Humans are most closely 
evolutionarily related to other simian species, including Old 
World Monkeys and New World Monkeys, which diverged 
~30 and ~50 million years ago, respectively (Stevens et al., 
2013; Yang et al., 2021a). Macaques (Old World) and mar-
mosets (New World) are the two most commonly used NHP 
species in anxiety research (Ausderau et al., 2023); each 
have a distinct utility for studying aspects of anxiety and 
fear based on their ethology and ecological niche (Capitanio, 
2017; Capitanio & Emborg, 2008; Gunnar et al., 2015; Kalin 
& Shelton, 2003; Machado & Bachevalier, 2003; Miller 
et al., 2016; Mitchell & Leopold, 2015; Okano, 2021; Saito, 
2015). NHPs have been leveraged to confirm the evolution-
ary conservation of brain-behavior relationships for many 
threat-relevant regions (Agustín-Pavón et al., 2012; Fox, 
Oler, Shackman et al., 2015a; Izquierdo et al., 2005; Kalin 
et al., 2004, 2007; Kenwood & Kalin, 2021; Machado & 
Bachevalier, 2008; Prather et al., 2001; Shiba et al., 2015). 
They also enable investigation of the role that these regions 
play in complex socioemotional behaviors across the lifes-
pan, including adolescent development, life-long plasticity, 
and social behaviors (Alisch et al., 2014; Bliss-Moreau et al., 
2017; Jacobs et al., 2023; Kovacs-Balint et al., 2023; Well-
man et al., 2016).

Perhaps most obviously, NHPs are uniquely well-suited 
to model cognitively-elaborated aspects of threat processing 
associated with the evolutionary expansion of the prefrontal 
cortex (García-Cabezas et al., 2019; Öngür & Price, 2000; 
Roberts & Clarke, 2019). In addition to being implicated in 
threat processing (Kenwood et al., 2022), the PFC plays an 
important role in attention, cognition, and decision-making 
(Miller et al., 2002). The primate PFC is a functionally het-
erogeneous region, which is largely, but not fully, homolo-
gous across humans, rhesus, and marmosets (Amiez et al., 
2023; García-Cabezas et al., 2019; Kenwood et al., 2022; 
Preuss & Wise, 2022; Tian et al., 2022). Studies of threat-
relevant behaviors have implicated NHP PFC subregions, 
including the orbitofrontal cortex (OFC), dorsolateral PFC 
(dlPFC), and medial PFC (mPFC) (Birn et al., 2014; Fox, 
Oler, Shackman et al., 2015a; Roberts & Clarke, 2019). 
Importantly, these PFC regions do not have clear homolo-
gies within the rodent PFC (Laubach et al., 2018), and even 
when they do, they often have different patterns of connec-
tivity (Amaral & Price, 1984; Ghashghaei & Barbas, 2002; 
Price, 2003). As such, the contributions of frontal regions 
to fear and anxiety cannot be readily modeled in rodents, 
and understanding the heterogeneity of anxiety disorders in 
humans will likely require NHP models.

NHPs have been used to uncover the role of specific 
frontal regions in threat processing, highlighting a heterog-
enous role for OFC subregions in various aspects of threat-
responding and threat-related decision making. In macaques, 
lesioning the entire OFC decreases freezing in potentially 
threatening contexts (Fox et al., 2010; Izquierdo & Mur-
ray, 2004, 2005; Kalin et al., 2007; Machado & Bachev-
alier, 2008). These effects are thought to be mediated by 
connections with subcortical regions, with lesions of the 
OFC or fibers through the OFC leading to corresponding 
decreases in freezing and BST metabolism (Fox et al., 2010; 
Kenwood, Oler et al., 2023a). However, in both marmosets 
and macaques, inactivation or excitotoxic lesions of spe-
cific OFC subregions can have the seemingly opposite effect 
(Agustín-Pavón et al., 2012; Clarke et al., 2015; Pujara et al., 
2019; Rudebeck et al., 2013). For example, in an approach-
avoidance conflict task, pharmacological inactivation of area 
11 of the OFC disrupts punishment-associated memories. 
Marmosets with area 11 inactivation increased their avoid-
ance of punishment-related stimuli, even in the absence of 
explicit punishment, suggesting an increased level of anxiety 
(Clarke et al., 2015). These findings reinforce the heteroge-
neity of behaviors that are termed “anxiety” and converge 
with other research showing a more general role for spe-
cific OFC regions in different aspects of value-learning and 
stimulus-relationship outcomes (Wallis, 2012). Together 
this points to the need for computational models to link dis-
tinct tasks across species. Although there is much work to 
be done, these studies demonstrate the value of NHPs for 
studying specific aspects of threat-processing because of 
their recent evolutionary divergence and cortical similarity 
to humans.

These are but a few examples of how different species 
can have distinctive characteristics based upon their unique 
behaviors, reproductive physiology, evolutionary history, 
social/family structures, etc. All of these differences can 
make an animal suitable or unsuitable for investigating par-
ticular aspects of fear and anxiety. In short, no one species is 
ideal, and translational neuroscience is best suited by draw-
ing on the wide variety of species in the animal kingdom 
(Kenkel et al., 2021; Lima & Dill, 1990; Maximino et al., 
2015; Preuss, 2019; Shannonhouse et al., 2014). To this 
end, selecting the most appropriate animal models for gain-
ing insight into select aspects of human anxiety is critical. 
To prioritize relevant animal studies and species selection, 
researchers must thoughtfully engage in reverse transla-
tion (i.e., use evidence from studies of human populations 
to guide animal research). Because of the heterogeneous 
presentation of anxiety in humans, researchers will need to 
identify specific aspects of the disorder that are best modeled 
in different species. Basic neuroscience approaches should 
be combined with ethologically relevant assays to identify 
the biological mechanisms that underlie that aspect of fear 
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and anxiety. Finally, results from these studies will inform 
translational research by guiding the development of compu-
tational models and developing hypotheses based on animal 
work that can be tested in humans.

Developing new approaches 
to understanding fear and anxiety: A role 
for computational models

Developing additional, ecologically relevant assays and 
incorporating additional species presents a new set of chal-
lenges for interpreting findings in relation to human fear 
and anxiety. To overcome these challenges, we propose that 
researchers use computational models in combination with 
targeted empirical studies. Although underutilized in stud-
ies of fear and anxiety, theory-driven computational mod-
eling can guide the development and interpretation of new 
paradigms, and enable cross-species integration (Huys et al., 
2021). Computational models designed to model underlying 
processes that mediate threat perception and the underly-
ing mechanisms that lead to different feelings, behaviors, 
and symptoms. These models can be used to develop new 
hypotheses about the precise role that specific brain cells are 
playing in anxiety and begin to shed light on the distributed 
neural circuit associated with fear and anxiety. This approach 
has been extremely successful in uncovering computations 
associated with reward learning in coordinated cross-species 
efforts (e.g., prediction errors coding in the VTA; Dabney 
et al., 2020; D’Ardenne et al., 2008; Jeong et al., 2022; 
Schultz et al., 1997) and could be applied to fear and anxiety. 
Recent efforts have begun to develop novel computational 
models derived from 1) ethology (Mobbs et al., 2021), 2) the 
statistics of the environment (Pulcu & Browning, 2019), and 
3) the underlying functional neurobiology of brain regions 
(O’Reilly et al., 2019).

Ethologically derived computational models are designed 
to develop hypotheses about the underlying computations 
that drive behavior across varying contexts. These models 
are built upon studies of animal behavior, which have iden-
tified parameters of the environment that signal the nature 
of a potential threat to guide adaptive responses. Computa-
tional models extend these findings by proposing dynamic 
processes that can explain behavior based on varied sources 
of information (e.g., distance, probability, type of threat, 
etc.). For example, Mobbs and colleagues have proposed 
model-based policies that are derived from distributed brain 
activation to guide behavioral selection across the threat 
imminence gradient (Mobbs et al., 2020). The neural com-
putations that occur in response to threat will vary across 
spatial and temporal parameters. For instance, an animals’ 
decision to freeze or escape is based on spatial and temporal 
aspects of the threat, as well as internal underlying states 

of the animal and the environment (Holley & Fox, 2022). 
Importantly, these underlying states cannot be inferred 
from behavior alone (Box 1). Ethologically based modeling 
approaches allow us to begin to disentangle the underlying 
computations that contribute to the execution of adaptive 
survival behaviors (Mobbs et al., 2020).

Computational models derived from the statistics of the 
environment provide a complementary approach to under-
standing fear and anxiety. Like ethologically driven mod-
els, these models are designed to be more precise about the 
nature of the threat, moving beyond imprecise language 
and providing explanations that extend beyond a particular 
context. For example, although the term “uncertainty” has 
been compellingly associated with the experience of anxi-
ety (Grupe & Nitschke, 2013), there is a lack of consist-
ency with how uncertainty has been defined. Computational 
models have targeted specific environmental parameters that 
fall under the umbrella of “uncertainty.” Uncertainty-related 
parameters include: the unknowable probability of an event 
(Lawrance et al., 2022), variance in the outcome of an action 
(Browning et al., 2015), and the evolving probability that 
an event will occur given that it has not already happened 
(Holley, personal observation, 2023). Each of these factors 
could be termed “uncertainty,” but in computational terms, 
each is an independent and dissociable factor that can be 
independently manipulated to increase fear and anxiety. For 
example, during an aversive learning task, Browning et al. 
demonstrated that patients with anxiety failed to adapt to a 
changing environment when action-outcome relationships 
become increasingly variable. Disambiguating different 
statistical features that contribute to uncertainty provides 
an avenue to understand how the brain encodes these dis-
tinct aspects of “uncertainty” and how these computations 
contribute to the subjective experience of fear and anxiety.

Finally, computational models derived from the underly-
ing neurobiology provide a “bottom-up” approach to under-
standing fear and anxiety. These models are built on our 
current understanding of the brain and uses observations 
of neuronal firing patterns in rodents to make predictions 
about how these neurons contribute to complex processing 
in humans. This approach has been successful in identify-
ing a grid-like code, based on research in mice, for abstract 
concepts in humans. Building on the discovery of grid cells 
in mice (Fyhn et al., 2008; Rowland et al., 2016), research-
ers developed computational models of how grid-cell fir-
ing would manifest in fMRI data during virtual egocentric 
exploration in humans (Doeller et al., 2010). Critically, this 
computational model was applied to demonstrate grid-like 
coding of complex conceptual information as humans per-
formed complex tasks (Constantinescu et al., 2016; Park 
et al., 2021). We encourage researchers to reflect on these 
published works, because they provide an excellent example 
of how neurobiologically derived computational models can 
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be used to shed light on human-specific experiences, as will 
be required to understand fear and anxiety.

A neurobiologically inspired computational approach 
could be extended to population coding in the Ce. In the 
Ce, researchers have demonstrated: 1) Ce metabolism that 
is not specific to a particular threat-response (Shackman 
et al., 2013); 2) distinct neurons in CeM that are sufficient to 
induce different aspects of a threat response (Viviani et al., 
2011); 3) neurons in CeL that project to CeM to induce 
threat responses (Haubensak et al., 2010); and 4) mutually 
inhibitory populations of CeL neurons that can elicit different 
threat responses when stimulated (i.e., freezing and escape) 
(Fadok et al., 2017). Although no studies have specifically 
investigated mutually inhibitory networks in Ce using fMRI, 
this area is ripe for study and could begin using the MVPA 
framework outlined above. Researchers have begun to pro-
pose computational models in which the CeL is integrating 
across different threat-relevant features and performing com-
putations to select the response that is expected to be most 
adaptive (Holley & Fox, 2022; Moscarello & Penzo, 2022).

Together, computational models will be critical for 
advancing our understanding of fear and anxiety by making 
predictions that are not specifically related to the threat assay 
used or behaviors measured. Moreover, computational mod-
els can be leveraged to understand the many presentations 
of anxiety disorders. These models provide a framework for 
understanding how the same neurobiological mechanism can 
result in heterogeneous presentations and/or how the same 
presentation of anxiety can result from multiple underly-
ing mechanisms (e.g., via different model-based policies or 
CeL computations). This enables researchers to correlate 
and manipulate specific parameters to identify the neural 
systems that underlie threat-relevant computations across 
varied behaviors and anxiety assays (which can be less spe-
cific, see Box 1). Although computational models have been 
underutilized in the context of fear and anxiety, ethologi-
cally, statistically, and neurobiologically derived computa-
tional approaches promise to identify specific computations 
instantiated in the varied cells and circuits within the dis-
tributed anxiety network that can guide the development of 
new treatment strategies.

Conclusions

There is substantial heterogeneity in the presentation of 
anxiety disorders. This heterogeneity is reflected in the 
distributed neural mechanisms that can contribute to fear- 
and anxiety-related behavior and the lack of one-size-fits 
all treatments. Overcoming this complexity and take the 
first steps toward developing more effective treatments, 
will require 1) translation of preclinical basic neuroscience 

research in rodents to test predictions about human anxi-
ety, 2) reverse translation of clinical observations in humans 
using multiple animal models, including NHPs and nontra-
ditional rodent species; 3) the development of computational 
models that can guide theory construction. A refined under-
standing of the brain circuits that give rise to anxiety and 
fear is a critical next step and is a prerequisite for identifying 
specific behavioral or pharmacological treatments that opti-
mally treat anxiety disorders. Although daunting, we have 
demonstrated that this work is possible, highlighted ongo-
ing efforts that have been successful, and suggested specific 
experiments that would begin to address these challenges. 
To this end, we strongly encourage dialogue and collabora-
tion between basic neuroscientists and clinicians to facilitate 
translation and reverse translation designed to maximize the 
impact of future studies to understand the biological bases 
of heterogeneity in anxiety disorders.

BOX 1: Considerations for interpreting 
measures of fear and anxiety

The translational study of fear and anxiety requires the 
study of individual humans and animals through the lens of 
a few measures in a limited set of contexts. Anxiety assays 
by necessity measure acute and context-specific behaviors. 
This stands in contrast to the experience of fear and anxi-
ety in individual suffering from anxiety disorders, which 
arise from heterogeneous contexts and produce heteroge-
neous responses. We highlight how this applies to animal 
models of fear and anxiety to exemplify the complexity of 
this problem and why translational work must incorporate 
multiple measures.

Behaviors do not exclusively represent a single, 
affective state

Animal models infer anxiety by examining observable 
behaviors, such as locomotion or freezing. Animal models 
are critical for demonstrating causality in neuroscience (Bale 
et al., 2019). However, many have questioned the validity 
of commonly used animal assays of anxiety (Beckers et al., 
2013; Ennaceur, 2014; Ennaceur & Chazot, 2016; Fonio 
et al., 2012). This is in part, because multiple affective states 
and motivations can result in the same observed behavior. 
For example, it is unclear whether increased locomotor 
activity in the center of an open field maze is due to a sub-
jects’ low level of trait anxiety, an internal drive to explore, 
or even motivation to escape the arena. Similarly, freezing 
at the perimeter of the open field arena could be caused by 
fear of the brightly lit, open space, an innate desire to avoid 
potential aerial predators, or unseen external factors.
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Distinct motivations to freeze are evident across assays; 
freezing on one task will not necessarily predict freezing on 
another. For example, freezing during context conditioning 
does not predict freezing on an elevated plus maze (Ahn 
et al., 2013; Hilton et al., 2023). Thus, the same mechanisms 
that lead to freezing during fear conditioning do not nec-
essarily contribute to freezing on more exploratory-based 
behavioral assays, supporting the observation that multiple 
neural circuits can trigger this behavioral state (Zelikowsky 
et al., 2018).

More generally, the observable behaviors on these assays 
often are influenced by a variety of “hidden” environmental 
factors (Butler-Struben et al., 2022; Vogt et al., 2022) as 
well as peripheral signals from outside the brain, includ-
ing peripheral organs, gut microbiota, and immune systems 
(Haroon et al., 2012; Koren et al., 2021; Kwon et al., 2021; 
Needham et al., 2022; Signoret-Genest et al., 2023; Tseng 
et al., 2023). All of these factors likely interact with the 
internal state of the animal to influence behavior, emphasiz-
ing that behavior does not have a one-to-one correspond-
ence with affective state. As such, we advise caution when 
broadly interpreting findings from singular behavioral 
measures.

The most adaptive behavior in a given situation can 
change depending on the context

Animals engage in behaviors that are determined to be the 
most optimal or adaptive strategy within the constraints of a 
specific task. For example, looming predators elicit freezing, 
presumably to avoid detection, whereas sweeping predators 
elicit escape, presumably because they believe they have 
been detected (De Franceschi et al., 2016; Lima & Dill, 
1990). Even within the same assay, the defensive strategies 
used by subjects can evolve. For example, adaptive defensive 
strategies change depending on the proximity or imminence 
of the threat (Blanchard et al., 2011; Mobbs et al., 2020; 
Moscarello & Penzo, 2022). During the “pre-encounter” 
phase when potential predators loom, risk-assessment behav-
iors (e.g., rearing, exploration) are deemed adaptive. As the 
predator approaches and becomes more imminent, adap-
tive responses shift toward minimizing detection, including 
freezing during the “post-encounter” phase and, if necessary, 
attempting escape during the “circa-strike” phase (Blanchard 
et al., 2011). Consequently, the interpretation of “anxiety-
like” behaviors can vary significantly depending on the spe-
cific context of each behavioral experiment.

There often is no singular advantageous, adaptive behav-
ior in response to threat, with adaptive reactions dependent 
upon an ever changing environment (Holley & Fox, 2022; 
Holmes & Patrick, 2018). This adaptability is a key aspect 
of threat regulation and one that is often dysregulated in 
patients with anxiety (Moscarello & Maren, 2018). In short, 

behavioral output represents a complex cost/benefit analysis 
and the most adaptive behavior in a situation is uniquely 
individual at a given moment (Holley & Fox, 2022). These 
considerations are important to ensure that animal studies 
are most relevant to human anxiety.

On the importance of multiple measures 
and contexts

In short, there is no one measure or assay that fully captures 
the experience of fear and anxiety in humans or animals. 
The concerns outlined above apply to freezing in rodents, 
just as well as they do to reaction time and/or amygdala 
BOLD activation in humans. This does not undermine the 
utility of individual assays. Rather, it serves as a caution-
ary tale about the overinterpretation of individual assays in 
restricted laboratory settings. Anxiety disorders are hetero-
geneous and persist across varied contexts, and translational 
research should take an equally heterogeneous approach. By 
incorporating various species, assays, and measures, trans-
lational research can be more than the sum of the individual 
measures and make great progress toward elucidating the 
neurobiology that contributes to anxiety disorders. When 
interpreting results from individual contexts or which report 
individual measures, it is important that we understand that 
this is simply a part of the puzzle, and simply “call a freeze 
a freeze.”
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