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Depressive disorders are a leading cause of global disability,
afflicting approximately 280 million individuals worldwide
each year (1). In the United States, more than one in five
individuals will experience a lifetime depressive disorder,
diagnoses and service utilization are surging, and direct
health care costs exceed $68 billion annually (2–6). These
unfortunate observations underscore the need to develop a
better understanding of the neural systems that underlie
depression.

Major depressive disorder (MDD) is a heterogeneous
phenotype that typically emerges in late adolescence or early
adulthood (7, 8). Clinical presentation can be transient or
recurrent, with periods of waxing and waning impairment
and distress. Comorbidity with anxiety disorders, substance
misuse, and other illnesses is common (9, 10). Given this
phenotypic, developmental, and—in all likelihood—etiological
complexity, it is unsurprising that neuroimaging studies of
MDD have implicated a diverse array of brain regions, in-
cluding the amygdala, ventral striatum, thalamus, and cingu-
late (11, 12).

Among the regions linked to depression, the amygdala has
received some of the most intense empirical scrutiny. This
body of research has led many to conclude that amygdala
hyperreactivity confers increased risk for MDD and other,
often co-occurring internalizing illnesses (13). This hy-
pothesis reflects three lines of evidence. First, moderately
large cross-sectional studies of youth and young adults
(sample sizes of 72–1,042 [14–17]) suggest that amygdala
function—including heightened reactivity and elevated
resting activity—is most consistently associated with in-
ternalizing risk (e.g., familial, temperamental), not the
severity of acute symptoms. Moreover, prospective lon-
gitudinal work (N5340 [18]) shows that heightened
amygdala reactivity to fearful and angry faces is associated
with the future emergence of self-reported mood and
anxiety symptoms in young adults (controlling for base-
line symptoms). Yet this prospective association is no-
tably selective and only manifests among individuals
exposed to negative life events (NLEs) during the follow-
up period (i.e., Amygdala3NLEs→Internalizing). Ancil-
lary analyses show that this prospective association is
1) numerically greater for negative (“threat-related”) than
neutral faces; 2) significant in both hemispheres (albeit more
strongly in the right); and 3) significant for anhedonia (e.g.,
nothing interesting/fun) and anxious apprehension (e.g.,

nervous), but not depressive affect (e.g., sad, depressed) or
anxious arousal (e.g., racing heart). While conceptually
important and statistically significant (p50.002), this as-
sociation is far too small to be practically useful (d50.34,
R252.7%), a point we return to later. Second, clinically
effective mood and anxiety treatments (e.g., SSRIs) dampen
amygdala reactivity to negative faces and aversive chal-
lenges, consistent with a causal role (19). Third, three recent
coordinate-based meta-analyses (CBMAs)—all adhering to
methodological best practices and collectively encompassing
dozens of studies and thousands of participants—provide
convergent evidence of left amygdala hyperreactivity in in-
dividuals with MDD (11, 20, 21).

Despite this progress, it is clear that most of the work
necessary to understand the nature and degree of the
amygdala’s contribution to depression remains undone.
Consider theCBMAevidence.Toensureanadequatenumber
of studies, all of the meta-analytic teams were forced to
engage in substantial “lumping,” and their results reflect a
mixture of adults and youth, medicated and unmedicated
cases, and a panoply of
emotional and cognitive
tasks. Janiri and col-
leagues found evidence
of left amygdala hyper-
reactivity, but this was
only evident at a liberal
threshold, and onlywhen
pooling studies of MDD and anxiety (21). Li and Wang re-
ported significant hyperreactivity in the left amygdala to
emotional faces and scenes in individuals with current de-
pressive disorders, but this was only foundwhen aggregating
positive and negative stimuli (11). In themost comprehensive
analysis, McTeague and colleagues observed significant hy-
perreactivity in the left amygdala to emotional stimuli in
individuals with interview-verified MDD or anxiety diag-
noses (20). Ancillary analyses suggested that these effects
were largely driven by studies of negative faces and scenes
(20, 21). While these results clearly show that left amygdala
reactivity to negative stimuli is elevated, on average at least,
among individuals with MDD, it remains unclear whether
this association reflects differences in the perception of
negative faces, the generation of negative affect to aversive
stimuli (e.g., unpleasant scenes, threat of shock), or some
combination of the two (22).

Tamm and colleagues’
report serves as a sober
reminder that simple box-
and-arrow neurobiological
explanations…are no longer
tenable.
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But themost significant and often overlooked limitation of
the CBMA evidence is the raw input, the grist for the meta-
analyticmill.While all of the CBMAs have impressively large
pooled samples, the size of the constituent imaging studies is
worrisomely small. In themost recent CBMA (N52,383 [11]),
themedian sample sizewas just 39 participants—19 cases and
20 controls—far too small to provide stable conclusions,
even under the most generous (and frankly unrealistic) as-
sumptions (23). For a benchmark “large” effect (d50.80 or
R2514%) and a liberal whole-brain corrected threshold
(aone-tailed50.01, ZCritical52.33), the power to detect case/
control differences in activation is just above chance (53.1%).
In the absence of publication, confirmation, or other biases
favoring particular outcomes, CBMAs derived from under-
powered studies are vulnerable to false negatives (24). But in
the presence of such biases, underpowered studies will tend
to capitalize on chance sampling variation and questionable
research practices in ways that optimistically bias meta-
analytic results—an outcome clearly demonstrated in the
candidate gene literature (25–28).

From this perspective, the new report from Tamm and
colleagues (29) in this issue is a welcome addition to the
literature. Leveraging data acquired from.20,000 older UK
Biobank participants (median age564 years), the authors
estimated associations between three depression phenotypes
and amygdala reactivity to negative faces with an unprece-
dented degree of statistical precision (27). Depression phe-
notypes included an ad hoc four-item self-report scale of
acute (past 2 weeks) depressive symptoms, self-reported
lifetime depression diagnosis, and probable lifetime ma-
jor depression based on a diagnostic questionnaire. None of
the assessments employed trained interviewers, and only
the last used formal diagnostic criteria (for a detailed cri-
tique of depression phenotyping in the UKBiobank, see Cai
et al. [30]). Individual differences in amygdala reactivity
were quantified in an unbiased manner using a bilateral
amygdala region-of-interest. Notably, both the data and
code are publically available, facilitating future use by other
investigators.

Tamm and colleagues’ analyses revealed null associations
between amygdala reactivity to negative faces and self-
reported symptoms and lifetime diagnoses. Relations be-
tween amygdala reactivity and the much stricter diagnostic
questionnaire were numerically stronger and statistically
significant (p50.01). Nonetheless, the magnitude of this as-
sociation was vanishingly small (d50.03, R250.03%) and
nonsignificant in models that included demographic cova-
riates (p50.13). The authors conclude by noting that “an
association between depression and amygdala responses to
negative faces is not likely to be as large as previously sug-
gested….[and] that amygdala responses to negative facial
expressions should not be considered an important feature/
biomarker of depressive symptoms, at least not in the general
population.”

Tammand colleagues’ observations add to a growing body
of psychiatric imaging research demonstrating that amygdala

hyperreactivity and other popular candidate biomarkers
explain statistically significant but quantitatively negligible
amounts of disease-relevant information—risk, status,
treatment response, course, and so on—in large samples. This
pessimistic conclusion is hardly specific to the amygdala. A
recent meta-analysis demonstrated that dampened ventral
striatum reactivity to reward is significantly (p50.007) and
consistently (nine studies;medianN591) associatedwith the
future emergence of depression, consistent with a causal role
(12). Yet the strength of this small-but-reliable association is
far too weak (R251%) to be useful for screening, clinical, or
treatment development purposes.

From a conceptual perspective, Tamm and colleagues’
diagnostic-questionnaire results are reasonably well aligned
with work in younger populations (reviewed above), sug-
gesting that 1) higher levels of amygdala reactivity to negative
faces probabilistically increase the likelihood of anhedonia
and anxiety symptoms among individuals exposed to NLEs;
2) amygdala reactivity is more strongly associatedwith state-
independent risk than acute symptoms; and 3) on average,
amygdala reactivity to negative faces and scenes is elevated in
groups of individuals with verified acute MDD. Individuals
withMDD show a wide variety of clinical presentations, and
this body of evidence is consistent with the possibility that
amygdala hyperreactivity is only etiologically relevant for a
subset of patients and symptoms. Determining whether this
is true or simply wishful thinking is a key challenge for the
future. From a mechanistic perspective, the small-but-
reliable “hits” uncovered by Big Data studies—including
Tamm and colleagues’ diagnostic-questionnaire results—do
not preclude much larger effects with targeted biological
interventions (12, 31). Indeed, work in animals demonstrates
that focal perturbations of specific amygdala cell types can
havedramatic, complex, andevenopposing consequences for
reward- (“wanting”) and anxiety-related behaviors (32, 33).

In sum, work conducted over the past decade has yielded
steady advances in our understanding of depression. Yet the
underlying neurobiological mechanisms remain elusive, ac-
tionable biomarkers remain out of reach, existing treat-
ments are far from curative, and relapse and recurrence are
common (34–36). Tamm and colleagues’ report serves as a
sober reminder that simple box-and-arrow neurobiological
explanations—which equate amygdala hyperreactivity with
depression independent of clinical presentation, severity,
disease stage, developmental period, adversity exposure,
imaging technique, and fMRI paradigm—are no longer
tenable.

Addressing these challenges will require an increased
investment in psychiatric research, one commensurate with
the staggering burden that depression and anxiety impose on
global public health. UK Biobank and other Big Data studies
(e.g., ABCD,All ofUs) clearlyhavean important role toplay in
overcoming these challenges, but to be maximally useful the
nextgenerationofbiobankand large-scalepsychiatric studies
will need to overcome the significant limitations of existing
ones. This will require the recruitment of demographically
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representative samples and adequate representation of se-
vere psychopathology, rigorous psychiatric phenotyping, and
reliable imaging approaches—three notable limitations of the
Tammstudy (10, 30, 37–40). To reallymove the needle on our
understanding—and ultimately on clinical practice—we will
need to move beyond negative-face paradigms and other
kinds of tried-and-true experimental challenges (31). Even if
the amygdala is mechanistically involved in the development
of maladaptive anhedonia or anxiety—as suggested by prior
work in humans and animals—then conventional negative-
face paradigms are fundamentally the wrong experimental
assay. Some of these challenges can be overcome by appro-
priately focused “Medium Data” projects (N5200–2,000;
e.g., Tulsa 1000) or by pooling data via existing consortia (e.g.,
ENIGMA). It is also worth reminding ourselves that the
amygdala is a heterogeneous collection of nuclei linked by a
network of microcircuits (41). Fully understanding the
amygdala’s relevance to depression and other illnesses re-
quires that future studies more fully embrace this neuro-
anatomical complexity. From the perspective of prediction, it
is clear that cross-validated multivariate machine-learning
approaches and related techniques—which quantitatively
synthesize multiple sources of imaging and nonimaging in-
formation at the population or patient levels—aremore likely
to yield clinically useful tools than studies focused on isolated
“hot spots” of brain function or structure (31). A greater
emphasis on reliable dimensional phenotypes (e.g., anhe-
donia) and the development of integrative cross-species
models promises to further accelerate efforts to alleviate
the suffering caused by depression (12, 31).
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