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Abstract

Tobacco smoking imposes a staggering burden on public health, underscoring the urgency

of developing a deeper understanding of the processes that maintain addiction. Clinical and

experience-sampling data highlight the importance of anxious withdrawal symptoms, but

the underlying neurobiology has remained elusive. Mechanistic work in animals implicates

the central extended amygdala (EAc)—including the central nucleus of the amygdala and

the neighboring bed nucleus of the stria terminalis—but the translational relevance of these

discoveries remains unexplored. Here we leveraged a randomized trial design, well-estab-

lished threat-anticipation paradigm, and multidimensional battery of assessments to under-

stand the consequences of 24-hour nicotine abstinence. The threat-anticipation paradigm

had the expected consequences, amplifying subjective distress and arousal, and recruiting

the canonical threat-anticipation network. Abstinence increased smoking urges and with-

drawal symptoms, and potentiated threat-evoked distress, but had negligible consequences

for EAc threat reactivity, raising questions about the translational relevance of prominent

animal and human models of addiction. These observations provide a framework for con-

ceptualizing nicotine abstinence and withdrawal, with implications for basic, translational,

and clinical science.
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Introduction

Tobacco smoking is a leading preventable cause of disease, disability, and premature death in

the U.S. and abroad [1, 2]. More than 1 in 7 U.S. adults (15.2%) regularly smoke tobacco [3].

The annual economic burden of tobacco smoking has been estimated at more than $600 bil-

lion in the U.S. alone [4]. Although the dangers of smoking are clear and most smokers

(~68%) want to quit, relapse is common and existing cessation aids are far from curative,

underscoring the importance of developing a deeper understanding of the mechanisms that

maintain nicotine use in humans [2, 5, 6].

The transition from tobacco use to nicotine dependence is undoubtedly complex and

dynamic, encompassing alterations in multiple motivational and self-regulatory mechanisms

[7–11]. Among them, there is abundant clinical, experience-sampling, and experimental work

demonstrating that anxiety and negative reinforcement mechanisms—smoking to alleviate

‘tension’ and emotional distress—play a central role in nicotine dependence and relapse [12–

17]. Acute nicotine abstinence is associated with heightened negative emotions—with the

strongest meta-analytic effects evident for anxiety (d = .63)—and anxiety serves as a diagnostic

criterion for nicotine withdrawal in DSM-5 [18–20]. Daily diary and ecological momentary

assessment (EMA) studies paint a similar picture, showing that nicotine abstinence leads to

pervasive increases in tonic anxiety and amplified reactivity to social conflict and other daily

stressors [21, 22]. The accompanying phasic surges in anxiety and other negative emotions

(e.g., anger) are, in turn, associated with heightened risk of relapse during cessation attempts

[17, 22–27]. Parallel results have been found in laboratory settings, where experimental stress-

ors trigger nicotine craving and promote consumption [28–30]. In sum, acute nicotine absti-

nence potently increases both tonic (stressor-independent) and reactive (stressor-dependent)

anxiety in ways that promote continued nicotine use, with some experimental research sug-

gesting that hyper-reactivity may be particularly evident for temporally uncertain stressors

[16, 31, but see 32]. Despite this progress, the neural circuitry underlying withdrawal-related

anxiety has remained unclear, impeding the development of more effective or tolerable biolog-

ical treatments.

Mechanistic studies in rats and mice motivate the popular hypothesis that withdrawal-

related anxiety and stress-induced reinstatement of nicotine use reflect functional alterations

in the central extended amygdala (EAc) [2, 9, 10], including the central nucleus of the amyg-

dala (Ce) and neighboring bed nucleus of the stria terminalis (BST) [33, 34]. Among nicotine-

dependent rodents, acute deprivation is associated with heightened signs of anxiety across a

range of threat assays and defensive behaviors (e.g., shock-probe burying) [35]. Focal perturba-

tion studies show that nicotine deprivation-induced increases in anxiety-related behaviors and

stress-induced reinstatement of nicotine use critically depend on specific molecular (e.g., corti-

cotrophin-releasing hormone, CRH; norepinephrine) signaling mechanisms in the EAc (Ce/

BST), with overlapping effects evident for other addictive substances [13, 35–38]. Yet the rele-

vance of these tantalizing neurobiological discoveries to the complexities of the human brain

and human withdrawal remains unclear. Humans and rodents diverged ~80 million years ago,

leading to marked behavioral, genetic, and neurobiological differences between the two species

[39–41]. Whether the EAc (Ce/BST) circuitry implicated in rodent models of anxious with-

drawal is evolutionarily conserved in human tobacco smokers experiencing acute nicotine

abstinence remains unexplored and unknown.

Here we used a novel combination of assessments—including questionnaire measures of

smoking urges and withdrawal, a well-established certain/uncertain threat-anticipation

(‘threat-of-shock’) paradigm, ratings of threat-evoked fear and anxiety, a psychophysiological

(skin conductance) measure of threat-evoked arousal, and functional MRI (fMRI)—and a
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between-subjects randomized trial design to understand the subjective and biological conse-

quences of 24-hour nicotine abstinence in a racially diverse sample of 75 daily tobacco smokers

(Fig 1). Prior work demonstrates that the threat-anticipation paradigm elicits robust distress

and arousal [42, 43]. This stands in stark contrast to popular ‘threat-related’ emotional face

fMRI paradigms [44–46], which do not elicit distress in typical adults and are better conceptu-

alized as probes of emotion perception [47]. A best-practices fMRI pipeline enhanced our abil-

ity to resolve the Ce and BST, the two major subdivisions of the EAc. Anatomically defined

regions-of-interest (ROIs) made it possible to test the central hypothesis that EAc (Ce/BST)

threat reactivity would be potentiated in the 24-Hour Abstinence group (vs. Smoke-as-Usual),

and to explore the possibility that this anticipated hyper-reactivity would be more evident dur-

ing the anticipation of temporally Uncertain Threat [31, but see 32]. In contrast to whole-

brain voxelwise analyses—which screen thousands of voxels for evidence of statistical signifi-

cance and yield optimistic effect size estimates in suprathreshold regions—anatomically

defined ROIs ‘fix’ the outcomes of interest a priori, providing statistically unbiased estimates

of brain-phenotype associations [i.e., effect sizes; 48].

Understanding the impact of nicotine abstinence on human EAc reactivity is conceptually

and practically important. It affords an opportunity to assess the translational relevance of

influential neurobiological models of addiction derived almost exclusively from work in

rodents [2]. Successful translation across species would prioritize EAc targets for nicotine-

related treatment development and testing [49, 50]. Discrepancies across species would point

to the need to refine animal models, human paradigms, or both. Both outcomes would inform

the development of bidirectional translational models of nicotine dependence, withdrawal,

and relapse. While not a central goal, the present project also promises to shed new light on

the neural systems recruited by certain and uncertain threat anticipation, a key question for

many fear and anxiety researchers [34, 51–57].

Method

In this section, we report how we determined our sample size, all data exclusions, all manipula-

tions, and all measures in the study.

Participants and enrollment criteria

Seventy-eight daily tobacco smokers were enrolled and scanned. Eligibility was determined

using a multi-stage procedure that included on-line, telephone, and face-to-face assessments.

Eligibility criteria included: 18–40 years old; smoke at least 10 cigarettes/day for at least 6

months; baseline breath carbon monoxide (CO) level of�8 parts per million (ppm) at base-

line; normal or corrected-to-normal color vision; English proficiency; and self-reported

absence of a non-nicotine substance use disorder, lifetime psychotic or bipolar disorder, life-

time neurological or pervasive developmental disorder, very premature birth, current psychi-

atric treatment, MRI contraindications, or prior experience with aversive electrical

stimulation. Similar tobacco-use and carbon-monoxide criteria have been used in prior labo-

ratory studies and clinical trials [e.g. 31, 32, 58, 59]. Ten or more cigarettes per day is consid-

ered a ‘moderate’ level of tobacco use [60]. All participants provided informed written

consent. Procedures were approved by the University of Maryland, College Park Institutional

Review Board (protocol #824438). Data from this project have not been featured in any prior

publications.

Three individuals were excluded from all analyses due to study withdrawal (n = 1) or inade-

quate task compliance (n = 2; see below). The final sample of 75 participants was racially

diverse (M = 30.05 years, SD = 5.64; 33.3% female; 49.3% African American, 25.3% White
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Fig 1. Study overview. Top three panels. (1) A racially diverse group of 75 daily tobacco smokers was recruited from the community. A multi-stage

screening process—including a baseline assessment of breath carbon monoxide (CO) levels—was used to assess eligibility. At the baseline laboratory

session, participants completed questionnaire measures of tobacco use and dependence. (2) Participants were randomized to either the Smoke-as-Usual or

24-Hour Abstinence groups, stratified by age and sex. (3) At the neuroimaging session, protocol compliance was confirmed by breath CO. Prior to

scanning, smoking urges and withdrawal symptoms were assessed. During scanning, participants completed a well-established threat-anticipation
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Non-Hispanic, 12.0% Asian, 9.4% Multiracial/Other, 4.0% Hispanic or Latino/a), enhancing

equity and generalizability [61, 62]. Educational attainment and income data are provided in

S1 and S2 Tables. As detailed in Table 1, the Smoke-as-Usual and 24-Hour Abstinence groups

were well matched. The two groups also did not differ in their general engagement with the

MTC paradigm, as indexed by the proportion of ratings completed (Table 1). Sensitivity anal-

yses performed using Welch’s t-test yielded identical conclusions (not reported). All partici-

pants showed acceptable levels of head-motion artifact, as detailed below.

Power analysis

Sample size was determined a priori as part of the application for the grant that supported data

collection (R21-DA040717). The target sample size (n�72) was chosen to afford acceptable

power and precision given available resources. At the time of study design, Gpower (version

3.1.9.2) indicated 88.3% power to detect a benchmark “large” group mean difference (d = .80)

with 10% planned attrition (n = 32/group; df = 63) using αtwo-tailed = .05 [63]. In practice, funds

were available to support the enrollment of 78 participants. With the exception of quality

assurance checks performed using data from the first few participants, all analyses were per-

formed following the acquisition of the entire dataset. The final sample (n = 75; Table 1) was

comparable to or larger than many prior studies focused on threat reactivity in acutely absti-

nent tobacco smokers [31, 32, 64]. A post hoc power analysis indicated that the final sample

was powered to detect medium-to-large effects (power >80% for d>.66).

General procedures

Recruitment. Daily tobacco smokers from the DC-Baltimore metropolitan region were

recruited using a combination of on-line (e.g., posts to social media platforms and groups) and

off-line advertisements (e.g., fliers and business cards distributed at high-traffic local restau-

rants, coffee shops, and libraries). Preliminary eligibility was determined using a multi-stage

screening process that included on-line surveys and a telephone screening.

Baseline laboratory session. Potentially eligible individuals were invited to a baseline lab-

oratory session. Smoking status was biochemically verified using a Micro+ Smokerlyzer (coV-

ita, Santa Barbara, CA). All participants demonstrated an exhaled CO level of at least 8 ppm,

averaged across three serial tests (Table 1). Participants also completed a battery of standard-

ized measures of tobacco use and dependence. Participants were then randomly assigned to

either the Smoke-as-Usual (SAU) or 24-Hour Abstinence group, stratified by age and sex. The

paradigm that encompassed measures of threat-evoked distress, physiological arousal, and brain function. Bottom two panels. Threat-Anticipation

Paradigm. As shown schematically in the bottom-left panel, the threat-anticipation paradigm took the form of a 2 (Valence: Threat/Safety) × 2 (Temporal
Certainty: Certain/Uncertain) repeated-measures, randomized event-related design. Subjects were completely informed about the task design and

contingencies prior to scanning. On Certain Threat trials, subjects saw a descending stream of integers (‘count-down’) for 18.75 s. To ensure robust distress,

the anticipation epoch culminated in the delivery of a noxious electric shock, unpleasant photographic image, and thematically related audio clip (e.g.,

scream). Uncertain Threat trials were similar, but the integer stream was randomized and presented for an uncertain and variable duration (8.75–30.00 s).

Participants knew that something aversive was going to occur, but they had no way of knowing precisely when. Safety trials were similar, but terminated

with the delivery of benign reinforcers (e.g., just-perceptible electrical stimulation). Mean duration of the anticipation epochs was identical across

conditions. Subjects were periodically prompted to rate the intensity of fear/anxiety experienced during the anticipation period of the prior trial. Skin

conductance was continuously acquired throughout. Neuroimaging Analyses. As shown schematically in the bottom-right panel, two approaches were

used to test the impact of acute hour nicotine abstinence on neural reactivity to threat. Guided by mechanistic work in animal models, hypothesis testing

focused on two well-established, anatomically defined EAc regions-of-interest (ROIs): the Ce (left) and BST (right). Because the ROIs (i.e., voxel-level

measurements) were chosen a priori—on the basis of anatomy, rather than suprathreshold threat reactivity—this approach provides unbiased effect size

estimates [48]. Standardized regression coefficients were extracted and averaged across voxels for each combination of ROI, threat type (Uncertain/

Certain), and participant. Hypothesis testing used a standard mixed-effects general linear model (GLM). For illustrative purposes, 1-mm ROIs are shown.

Analyses employed ROIs decimated to the 2-mm resolution of the fMRI data. As shown schematically in the bottom-right panel, exploratory whole-brain

voxelwise analyses were also performed. Abbreviations—BST, bed nucleus of the stria terminalis; Ce, central nucleus of the amygdala; fMRI, functional

magnetic resonance imaging; hrs., hours; M, mean; s, seconds.

https://doi.org/10.1371/journal.pone.0288544.g001
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Smoke-as-Usual group was instructed to continue their normal smoking habits prior to their

neuroimaging session, whereas the 24-Hour Abstinence group was instructed to refrain from

smoking or using any other nicotine products for 24 hours prior to the scheduled neuroimag-

ing session. To encourage protocol compliance, a series of email and text message reminders

was sent prior to and during the final 24 hours.

Neuroimaging session. Upon arrival at the neuroimaging session, protocol compliance

was assessed. For the 24-Hour Abstinence group, participants were allowed to proceed with

scanning upon self-reporting nicotine abstinence and receiving a CO reading of<50% of their

baseline level. Participants in the Smoke-as-Usual group demonstrated CO levels of at least

8 ppm. By design, measured CO levels were significantly reduced in the 24-Hour Abstinence

group (Table 1). Prior to scanning, participants were offered a brief break, and those in the

Smoke-as-Usual group were encouraged to smoke ad libitum. Prior to scanning, participants

completed a battery of standardized questionnaires assessing smoking urges and withdrawal

symptoms (see below). During scanning, foam inserts were used to immobilize the partici-

pant’s head within the head-coil and mitigate potential motion artifact. Participants were con-

tinuously monitored using an MRI-compatible eye-tracker (Eyelink 1000; SR Research,

Table 1. Descriptive statistics for the complete sample, Smoke-as-Usual group, and 24-Hour Abstinence group.

Complete

Sample

Smoke-as-

Usual

24-hour

Abstinence

Group Differences

Baseline demographic

variables

Total N 75 37 38 N/A

Female N 25 15 10 χ2 = 1.12, p = 0.28

Age (years) 30.05 (5.64) 30.11 (5.53) 30 (5.81) t(73) = -0.08,

p = 0.93

Years smoked, mean (SD) 11.89 (6.49) 12.03 (6.86) 11.76 (6.19) t(73) = -0.17,

p = 0.86

Cigarettes/day, mean (SD) 13.47 (4.46) 13.05 (4.58) 13.87 (4.36) t(73) = 0.78, p = 0.43

FTCD score, mean (SD) 5.71 (1.38) 5.65 (1.44) 5.78 (1.33) t(73) = 0.39, p = 0.69

WISDM total score, mean (SD) 52.42 (14.56) 50.33 (12.18) 54.46 (16.46) t(73) = 1.23, p = 0.22

WISDM negative reinforcement subscale score,

mean (SD)
4.72 (1.49) 4.67 (1.34) 4.78 (1.64) t(73) = 0.33, p = 0.73

Baseline CO level (ppm), mean (SD) 26.4 (14.75) 28.95 (17.63) 23.92 (10.94) t(73) = -1.48,

p = 0.14

Neuroimaging session

variables

WSWS total score, mean (SD) N/A 36.68 (12.03) 61.97 (18.50) t(73) = 7.00,

p<0.001

WSWS anxiety subscale score, mean (SD) N/A 5.08 (3.29) 9.29 (3.66) t(73) = 5.23,

p<0.001

BQSU score, mean (SD) N/A 26.38 (13.03) 54.29 (10.83) t(73) = 10.09,

p<0.001

Experimental CO level (ppm), mean (SD)a N/A 35.75 (41.36) 3.35 (5.84) t(73) = -4.78,

p<0.001

Aversive electrical stimulation level (V), mean (SD) 121.33 (45.14) 121.73 (45.35) 120.95 (45.53) t(73) = -0.07,

p = 0.94

Benign electrical stimulation level (V), mean (SD) 24.43 (5.48) 24.70 (5.42) 24.16 (5.59) t(73) = -0.42,

p = 0.66

Ratings Completed (%), mean (SD) 94.95 (9.88) 96.33 (8.52) 93.61 (10.99) t(73) = -1.19,

p = 0.23

a CO levels at the neuroimaging session were also significantly reduced in the 24-Hour Abstinence group relative to their own baseline levels. t(37) = 11.27, p< .001.

Abbreviations—BQSU, Brief Questionnaire of Smoking Urges; CO, carbon monoxide; FTND, Fagerstrom Test for Cigarette Dependence; ppm, parts per million; SD,

standard deviation; V, volts; WISDM, Wisconsin Inventory of Smoking Dependence Motives; WSWS: Wisconsin Smoking Withdrawal Scale.

https://doi.org/10.1371/journal.pone.0288544.t001
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Ottawa, Ontario, Canada) and the AFNI real-time motion plugin [65]. Measures of respiration

and breathing were continuously acquired during scanning using a respiration belt and photo-

plethysmograph affixed to the first digit of the non-dominant hand. Following the last scan,

participants were removed from the scanner, debriefed, compensated, and discharged.

Measures of nicotine use and dependence

Fagerstrom Test for Cigarette Dependence (FTCD). To assess potential group differ-

ences in nicotine dependence, participants completed the FTCD (6-items) at the baseline labo-

ratory session [66–68]. Yes-or-no items are rated as 1-or-0. Multiple-choice items are rated

from 0 to 3. Higher total (sum) scores indicate greater nicotine dependence.

Wisconsin Inventory of Smoking Dependence Motives (WISDM). To assess potential

group differences in general and negative reinforcement-specific tobacco smoking motivation,

participants completed the WISDM (68 items) at the baseline laboratory session [69]. Items

are rated on a 7-point scale, with 1 indicating ‘not true of me at all’ and 7 indicating ‘extremely

true of me’. The total score is the sum of the means across subscales. The total scale (68 items,

α = .97) and negative-reinforcement facet scale (6 items, α = .88) were calculated for each par-

ticipant. Higher scores indicate greater nicotine dependence.

Wisconsin Smoking Withdrawal Scale (WSWS). To assess general and anxiety-specific

symptoms of nicotine withdrawal syndrome and to verify protocol compliance, participants

completed the WSWS (28 items) at the neuroimaging session [70]. Items are rated on a

5-point scale, with 0 indicating ‘strongly disagree’ and 4 indicating ‘strongly agree’. Items are

summed to generate a score for each subscale and a total score. The total scale (28 items, α =

.94) and anxiety subscale score (4 items, α = .83) were calculated for each participant. Higher

scores indicate greater nicotine withdrawal symptoms.

Brief Questionnaire of Smoking Urges (BQSU). To assess tobacco smoking craving and

to verify protocol compliance, participants completed the BQSU (10 items) at the neuroimag-

ing session (West & Ussher, 2009). Items are rated on a 7-point scale, with 1 indicating

‘strongly disagree’ and 7 indicating ‘strongly agree’. Items are summed to generate a score for

each subscale and a total score. The total score (10 items, α = .96) was calculated for each par-

ticipant. Higher scores indicate greater smoking urges/craving.

Threat-anticipation paradigm

Paradigm structure and design considerations. The Maryland Threat Countdown

(MTC) is a well-established, fMRI-optimized version of temporally uncertain-threat assays

previously validated using fear-potentiated startle and acute anxiolytic administration (e.g.,

benzodiazepine) in mice [71, 72], rats [73], and humans [74]. The MTC has been successfully

used in a number of human fMRI studies [42, 43].

The MTC paradigm (Fig 1) takes the form of a 2 (Valence: Threat/Safety) × 2 (Temporal
Certainty: Uncertain/Certain) randomized, event-related, repeated-measures design (3 scans;

6 trials/condition/scan). Subjects were completely informed about the task design and contin-

gencies prior to scanning. Simulations were used to optimize the detection and deconvolution

of task-related hemodynamic signals (variance inflation factors <1.54). Stimulus presentation

and ratings acquisition were controlled using Presentation software (version 19.0, Neurobeha-

vioral Systems, Berkeley, CA).

Valence was continuously signaled during the anticipation epoch by the background color

of the display. Trial certainty was signaled by the nature of the integer stream. On Certain

Threat trials, subjects saw a descending stream of integers (‘count-down;’ 30, 29, 28. . .3, 2, 1)

for 18.75 s (0.625 s/integer). To ensure robust distress, this anticipation epoch always

PLOS ONE Nicotine abstinence amplifies withdrawal and distress, not extended amygdala function

PLOS ONE | https://doi.org/10.1371/journal.pone.0288544 July 20, 2023 7 / 31

https://doi.org/10.1371/journal.pone.0288544


culminated with the delivery of a noxious electric shock, unpleasant photographic image (e.g.,

mutilated body), and thematically related audio clip (e.g., scream, gunshot). Uncertain Threat

trials were similar, but the integer stream was randomized and presented for an uncertain and

variable duration (8.75–30.00 s). Here, participants knew that something aversive was going to

occur, but they had no way of knowing precisely when. Safety trials were similar, but termi-

nated with the delivery of benign reinforcers (i.e., just-perceptible electrical stimulation and

neutral audiovisual stimuli). Mean duration of the anticipation epochs was identical across

trial types, ensuring an equal number of measurements (TRs/condition). The specific mean

duration was chosen to enhance detection of task-related differences in the blood oxygen

level-dependent (BOLD) signal [75]. To mitigate potential confusion and eliminate mnemonic

demands, a lower-case ‘c’ or ‘u’ was presented at the lower edge of the display throughout the

anticipatory epoch. White-noise visual masks (3.2 s) were presented between trials to mini-

mize persistence of the visual reinforcers in iconic memory. Subjects were periodically

prompted (following the visual mask) to rate the intensity of fear/anxiety experienced a few

seconds earlier, during the anticipation period of the prior trial, using a 1 (minimal) to 4 (max-
imal) scale and an MRI-compatible response pad (MRA, Washington, PA). Each condition

was rated once per scan (16.7% trials). Skin conductance was continuously acquired

throughout.

Procedures. Prior to fMRI scanning, participants practiced an abbreviated version of the

MTC paradigm without electrical stimulation until staff confirmed understanding. Benign

and aversive electrical stimulation levels were individually titrated. Benign Stimulation. Partici-

pants were asked whether they could “reliably detect” a 20 V stimulus and whether it was “at

all unpleasant.” If the participant could not detect the stimulus, the voltage was increased by 4

V and the process repeated. If the participant indicated that the stimulus was unpleasant, the

voltage was reduced by 4 V and the process was repeated. The final level chosen served as the

benign electrical stimulation during the imaging assessment (M = 24.43 V, SD = 5.48 V). Aver-
sive Stimulation. Participants received a 100 V stimulus and were asked whether it was “as

unpleasant as you are willing to tolerate.” If the participant indicated that they were willing to

tolerate more intense stimulation, the voltage was increased by 10 V and the process repeated.

If the participant indicated that the stimulus was too intense, the voltage was reduced by 5 V

and the process repeated. The final level chosen served as the aversive electrical stimulation

during the imaging assessment (M = 121.33 V, SD = 45.14 V). Following each scan, staff ver-

bally re-assessed whether the level of stimulation was sufficiently aversive and re-calibrated as

necessary. Stimulation levels were similar to prior work in university samples [42]. The groups

did not significantly differ in the chosen intensity of benign or aversive electrical stimulation

(Table 1).

Electrical stimuli. Electrical stimuli (100 ms; 2 ms pulses every 10 ms) were generated

using an MRI-compatible constant-voltage stimulator system (STMEPM-MRI; Biopac Sys-

tems, Inc., Goleta, CA). Stimuli were delivered using MRI-compatible, disposable carbon elec-

trodes (Biopac) attached to the fourth and fifth digits of the non-dominant hand.

Visual stimuli. Visual stimuli (1.8 s) were digitally back-projected (Powerlite Pro G5550,

Epson America, Inc., Long Beach, CA) onto a semi-opaque screen mounted at the head-end of

the scanner bore and viewed using a mirror mounted on the head-coil. A total of 72 aversive

and benign photographs were selected from the International Affective Picture System [for

details, see 42].

Auditory stimuli. Auditory stimuli (0.80 s) were delivered using an amplifier (PA-1

Whirlwind) with in-line noise-reducing filters and ear buds (S14; Sensimetrics, Gloucester,

MA) fitted with noise-reducing ear plugs (Hearing Components, Inc., St. Paul, MN). A total of

72 aversive and benign auditory stimuli were adapted from open-access online sources.
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Skin conductance data acquisition. Skin conductance was continuously acquired during

each scan using a Biopac system (MP-150; Biopac Systems, Inc., Goleta, CA). Skin conduc-

tance (250 Hz; 0.05 Hz high-pass) was measured using MRI-compatible disposable electrodes

(EL507) attached to the second and third digits of the non-dominant hand.

MRI data acquisition. MRI data were acquired using a Siemens Magnetom TIM Trio 3

Tesla scanner (32-channel head-coil). Sagittal T1-weighted anatomical images were acquired

using a magnetization prepared rapid acquisition gradient echo sequence (TR = 2,400 ms;

TE = 2.01 ms; inversion time = 1,060 ms; flip angle = 8˚; sagittal slice thickness = 0.8 mm; in-

plane = 0.8 × 0.8 mm; matrix = 300 × 320; field-of-view = 240 × 256). A T2-weighted image

was collected co-planar to the T1-weighted image (TR = 3,200 ms; TE = 564 ms; flip

angle = 120˚). To enhance resolution, a multi-band sequence was used to collect oblique-axial

echo planar imaging (EPI) volumes (multiband acceleration = 6; TR = 1,250 ms; TE = 39.4 ms;

flip angle = 36.4˚; slice thickness = 2.2 mm, number of slices = 60; in-plane resolu-

tion = 2.1875 × 2.1875 mm; matrix = 96 × 96). Images were collected in the oblique axial plane

(approximately −20˚ relative to the AC-PC plane) to minimize potential susceptibility artifacts.

A total of three 478-volume EPI scans were acquired. The first seven volumes were automati-

cally discarded by the scanner. To enable fieldmap correction, two oblique-axial spin echo

(SE) images were collected in each of two opposing phase-encoding directions (rostral-to-cau-

dal and caudal-to-rostral) at the same location and resolution as the functional volumes (i.e.,

co-planar; TR = 7,220 ms; TE = 73 ms).

Skin conductance data pipeline. Skin conductance data were processed using PsPM (ver-

sion 4.0.2) and in-house Matlab (version 9.9.0.1467703) code [76, 77]. Data were regressed to

remove pulse and respiration signals and de-spiked using filloutliers (150-sample moving-

median widow; modified Akima cubic Hermite interpolation). Each scan was then band-pass

filtered (0.009–0.333 Hz), median centered, and down-sampled (4 Hz). Participant-specific

skin conductance response functions (SCRFs) were estimated by fitting the four parameters of

the canonical SCRF [78] to the grand-average reinforcer response using fmincon and a cost

function that maximized variance explained and penalized negative coefficients.

MRI data pipeline. Methods were optimized to minimize spatial-normalization error and

other potential sources of noise. Data were visually inspected before and after processing for

quality assurance.

Anatomical data processing. Methods are similar to those described in other recent

reports by our group [42, 43]. T1-weighted images were inhomogeneity corrected using N4
[79] and denoised using ANTS [80]. The brain was then extracted using BEaST [81] and brain-

extracted and normalized reference brains from IXI [82]. Brain-extracted T1 images were nor-

malized to a version of the brain-extracted 1-mm T1-weighted MNI152 (version 6) template

[83] modified to remove extracerebral tissue. Normalization was performed using the diffeo-

morphic approach implemented in SyN (version 2.3.4) [80]. T2-weighted images were rigidly

co-registered with the corresponding T1 prior to normalization. The brain extraction mask

from the T1 was then applied. Tissue priors were unwarped to native space using the inverse

of the diffeomorphic transformation [84]. Brain-extracted T1 and T2 images were segmented

—using native-space priors generated in FAST (version 6.0.4) [85]—to enable T1-EPI co-regis-

tration (see below).

Fieldmap data processing. SE images and topup were used to create fieldmaps. Fieldmaps

were converted to radians, median-filtered, and smoothed (2-mm). The average of the distor-

tion-corrected SE images was inhomogeneity corrected using N4 and masked to remove extra-

cerebral voxels using 3dSkullStrip (version 19.1.00).

Functional data processing. EPI files were de-spiked using 3dDespike, slice-time cor-

rected to the TR center using 3dTshift, and motion corrected to the first volume and
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inhomogeneity corrected using ANTS (12-parameter affine). Transformations were saved in

ITK-compatible format for subsequent use [86]. The first volume was extracted for EPI-T1

coregistration. The reference EPI volume was simultaneously co-registered with the corre-

sponding T1-weighted image in native space and corrected for geometric distortions using

boundary-based registration [85]. This step incorporated the previously created fieldmap,

undistorted SE, T1, white matter (WM) image, and masks. The spatial transformations neces-

sary to transform each EPI volume from native space to the reference EPI, from the reference

EPI to the T1, and from the T1 to the template were concatenated and applied to the processed

EPI data in a single step to minimize incidental spatial blurring. Normalized EPI data were

resampled (2 mm3) using fifth-order b-splines. Hypothesis testing focused on anatomically

defined regions of interest (ROIs), as detailed below. To maximize anatomical resolution, no

additional spatial filters were applied, consistent with recent recommendations [87]. By con-

vention, exploratory whole-brain voxelwise analyses employed data that were spatially

smoothed (6-mm) using 3DblurInMask.

Skin conductance data exclusions and modeling

Data exclusions. Six participants were excluded from skin conductance analyses due to

inadequate data quality, indicated by either staff observation at the time of data acquisition or

non-positive mean responses to noxious stimulation.

First-Level modeling. Robust general linear models (GLMs) were used to separate elec-

trodermal signals associated with the anticipatory periods of the MTC paradigm from those

evoked by other aspects of the task (e.g., reinforcer delivery). Modeling was performed sepa-

rately for each participant and scan using robustfit. Subject-specific SCRFs were convolved

with rectangular regressors time-locked to the presentation of the reinforcers (separately for

each trial type), visual masks, and rating prompts. To quantify skin conductance level (SCL)

during the anticipation (‘countdown’) epochs, first-level residuals were averaged separately for

each participant and trial type.

fMRI data exclusions and modeling

Data exclusions. Participants who responded to<50% of rating prompts—indicating

poor task compliance—were excluded from all analyses (n = 2). The remaining participants

completed >83% of the ratings (Table 1). Volume-to-volume displacement (>0.5 mm) was

used to assess residual motion artifact. Scans with excessively frequent artifacts (>3 SD) were

discarded. The remaining participants provided at least 2 scans of usable data.

Canonical first-level modeling. Single-participant (‘first-level’) GLMs were used to sepa-

rate hemodynamic signals associated with the anticipatory periods of the MTC paradigm from

those evoked by other aspects of the task. GLMs were implemented in SPM12 (version 7771)

using the default autoregressive model and the temporal band-pass filter set to the hemody-

namic response function (HRF) and 128 s [88]. Anticipatory signals were modeled using vari-

able-duration rectangular regressors time-locked to the countdown periods of the Uncertain

Threat, Certain Threat, and Uncertain Safety trials; and convolved with a canonical HRF and

its temporal derivative. To maximize design efficiency, Certain Safety anticipation—which is

psychologically similar to a conventional inter-trial interval—served as the implicit baseline.

Periods corresponding to the presentation of the reinforcers (separately for each trial type),

visual masks, and rating prompts were simultaneously modeled using the same approach.

Consistent with prior work using the MTC paradigm [42, 43], nuisance variates included esti-

mates of volume-to-volume displacement, motion (6 parameters × 3 lags), cerebrospinal fluid

(CSF) signal, instantaneous pulse and respiration rates, and ICA-derived nuisance signals (e.g.
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brain edge, CSF edge, global motion, white matter) [89]. Volumes with excessive volume-to-

volume displacement (>0.5 mm) and those during and immediately following reinforcer

delivery were censored.

Extended amygdala regions of interest (ROIs). Consistent with prior work by our

group, task-related Ce and BST activation was quantified using well-established, anatomically

defined ROIs and spatially unsmoothed fMRI data in atlas space [87] (Fig 1). The derivation of

the Ce ROI is detailed in Tillman et al. (2018). The probabilistic BST ROI was developed by

Theiss and colleagues and was thresholded at 25% [90]. It mostly encompasses the supra-com-

missural BST, given the difficulty of reliably discriminating the borders of regions below the

anterior commissure in T1-weighted images [91]. Bilateral ROIs were decimated to the 2-mm

resolution of the fMRI data. EAc ROI analyses used standardized regression coefficients

extracted and averaged for each combination of task contrast (e.g., Uncertain Threat anticipa-

tion vs. Uncertain Safety anticipation), ROI, and participant. A priori anatomically defined

ROIs provided unbiased estimates of brain-phenotype associations [i.e., statistically unbiased

effect size estimates; 48]. Key conclusions remained unchanged when Certain and Uncertain

Threat were contrasted with the implicit baseline (Certain Safety anticipation; not reported).

Analytic strategy

Overview. Except where noted otherwise, analyses were performed using R (version 4.0.2)

[92] and RStudio [93]. Descriptive psychometric analyses were performed using psych (version

2.2.5) [94]. Some figures were created using ggpubr (version 0.4.0) [95] and MRIcron [96]. To

facilitate interpretation, standardized effect sizes (Cohen’s d) were computed for key group

mean differences using JASP (version 0.16.3) [97].

The overarching goal of this project was to perform a multimodal assessment of the impact

of 24-hour nicotine abstinence, with a major focus on the consequences of acute abstinence

for EAc threat reactivity. To that end, hypothesis testing focused on four measurement modali-

ties (‘readouts’): (a) questionnaire measures of subjective smoking urges (BQSU) and with-

drawal symptoms (WSWS), including anxious withdrawal (WSWS-Anxiety); (b) in-scanner

ratings of subjective fear and anxiety elicited by threat anticipation; (c) concurrent measures of

threat-evoked physiological arousal (SCL); and (d) and fMRI measures of EAc threat reactivity

(Ce and BST ROIs; spatially unsmoothed data).

Confirmatory testing. In combination with the breath CO assessment performed at the

outset of the neuroimaging session (Table 1), the questionnaire measures of smoking urges

and withdrawal served as a check on the validity of the abstinence manipulation, while the rat-

ings and SCL measures served as a check on the validity of the threat-anticipation (MTC) para-

digm [98, 99]. As a further check, we confirmed that the MTC paradigm activated the

canonical threat-anticipation network, including the dorsal amygdala (Ce) and BST [42, 43,

100]. Spatially smoothed data (6-mm kernel) and whole-brain voxelwise (‘second-level’)

repeated-measures GLMs (‘random effects’) were used to compare each threat-anticipation

condition with its corresponding control condition (e.g., Uncertain Threat vs. Uncertain

Safety). Significance was assessed using FDR q< .05, whole-brain corrected. As in prior work

by our group [42], a minimum conjunction test (logical ‘AND’) was used to identify voxels

sensitive to both temporally Certain and Uncertain Threat anticipation [101]. Finally, a series

of one-sample Student’s t-tests was used to confirm that the EAc ROIs—which capitalized on

spatially unsmoothed data—showed significant activation during Certain and Uncertain

Threat anticipation.

Hypothesis testing. A series of independent Student’s t-tests were used to confirm the

expectation that the 24-Hour Abstinence group would experience elevated smoking urges and
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withdrawal. Standard mixed-effects GLMs—implemented using afex (version 1.1–1)—were

used to test whether acute abstinence potentiates subjective (fear/anxiety ratings) and objective

psychophysiological (SCL) reactivity to the threat-anticipation paradigm [102]. Significant

interactions (e.g., Group × Valence) were decomposed using focal independent or dependent

Students t-tests. The same approach was used to test the central hypothesis that EAc threat

reactivity would be potentiated in the 24-Hour Abstinence group, and to explore the possibil-

ity that hyper-reactivity would be more evident during Uncertain Threat anticipation [31]. It

merits comment that—because this analysis used contrasts (Uncertain Threat–Uncertain

Safety; Certain Threat–Certain Safety)—the main effect of ‘ROI’ is conceptually and statisti-

cally equivalent to testing the Region × Valence interaction. On an exploratory basis, we also

performed a series of whole-brain voxelwise GLMs to identify potential group differences in

activation during Certain and Uncertain Threat anticipation (FDR q< .05, whole-brain cor-

rected). Sensitivity analyses indicated that none of the conclusions changed when mean-cen-

tered age was included as a nuisance variate (results not reported). Likewise, none of the

conclusions drawn from the ROI analyses materially changed when we included mean-cen-

tered Ce/BST temporal signal-to-noise (tSNR)—an index of regional signal quality—as a nui-

sance variate (results not reported).

Results

Acute nicotine abstinence increases smoking urges and withdrawal

symptoms

As shown in Table 1 and S1 Fig, the 24-Hour Abstinence group reported significantly greater

smoking urges (BQSU), general withdrawal symptoms (WSWS), and anxious withdrawal

(WSWS Anxiety) just prior to scanning, reinforcing the validity of our abstinence manipula-

tion (ts(73)>5.22, ps<0.001, Cohen’s ds>1.21).

Acute nicotine abstinence potentiates subjective reactivity to threat

As shown in Fig 2A, fearful and anxious feelings were significantly elevated during the antici-

pation of Threat compared to Safety, and during the anticipation of temporally Uncertain

compared to Certain reinforcers (Valence: F(1,73) = 108.73, p<0.001; Certainty: F(1,73) =

32.53, p<0.001).

Notably, the 24-Hour Abstinent group reported significantly more intense fear and anxiety

during Threat (vs. Safety) anticipation, compared to the Smoke-as-Usual group

(Group × Valence: F(1,73) = 10.40, p = 0.002, Cohen’s d = 0.75; 24-Hour Abstinence, Threat

vs. Safety: t(37) = 9.05, p<0.001; Smoke-as-Usual, Threat vs. Safety: t(36) = 5.51, p<0.001).

The group difference in distress was numerically larger when threat was temporally uncertain,

but this difference was not statistically significant (Group × Valence × Certainty, F(73) = 2.39,

p = 0.13). Other effects were not significant, ps>0.13. In short, acute nicotine abstinence

amplifies threat-evoked distress, and does so similarly across Certain and Uncertain threat

contexts (Fig 2B).

Acute nicotine abstinence non-specifically increases physiological arousal

As shown in Fig 2C, SCL—an objective psychophysiological index of arousal—was signifi-

cantly increased during the anticipation of Threat compared to Safety, and this was particu-

larly evident during the anticipation of temporally Uncertain reinforcers (Valence: F(1,67) =

746.50, p<0.001; Certainty: F(1,67) = 101.86, p<0.001; Valence × Certainty: F(1,67) = 746.50,

p<0.001; Threat, Uncertain vs. Certain: t(68) = 12.72, p<0.001; Safety, Uncertain vs. Certain: t
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Fig 2. The impact of acute nicotine abstinence on subjective distress and objective physiological arousal elicited by the threat-anticipation paradigm.

Upper panels. Mean self-reported intensity of fear and anxiety experienced during the anticipation epoch of each condition for the Smoke-as-Usual (grey) and

24-hour Abstinence (red) groups. Participants were quasi-randomly prompted to rate each condition three times while completing the MTC paradigm. Lower
panels. Mean SCL during the anticipation epochs of the MTC. (a) Consistent with prior work, distress was significantly elevated during the anticipation of

Threat compared to Safety, and during the anticipation of temporally Uncertain compared to Certain reinforcers (ps<0.001). (b) The 24-Hour Abstinence
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(68) = -3.89, p<0.001). These observations reinforce the validity of the MTC paradigm as an

experimental probe of fear and anxiety.

Averaged across conditions of the MTC paradigm, abstinent smokers showed significantly

greater physiological arousal than those who smoked as usual (F(1,67) = 7.56, p = 0.008,

Cohen’s d = 0.66). Echoing the results for subjective distress, the 24-Hour Abstinence group

also showed a trend toward greater arousal during Threat anticipation (Group × Valence: F
(1,67) = 2.59, p = 0.071, Cohen’s d = 0.44; 24-Hour Abstinence, Threat vs. Safety: t(34) = 20.52,

p<0.001; Smoke-as-Usual, Threat vs. Safety: t(33) = 18.13, p<0.001). The group difference in

arousal was numerically larger when threat was temporally uncertain, but this difference was

not statistically significant (Group × Valence × Certainty, F(67) = 2.59, p = 0.11). Other effects

were not significant, ps>0.10. Collectively, these observations show that acute nicotine absti-

nence non-specifically increases physiological arousal during periods of threat and safety

anticipation (red vs. gray bars, Fig 2C), and provide weak convergent evidence of potentiated

reactivity to threat (Fig 2D).

The MTC paradigm recruits the canonical threat-anticipation network,

including the EAc

We used a series of whole-brain voxelwise GLMs to determine whether that the MTC para-

digm had the intended consequences on brain function. As expected, Uncertain Threat antici-

pation was associated with significant activation across a widely distributed network of regions

previously implicated in the expression and regulation of human fear and anxiety [100],

including the midcingulate cortex (MCC); anterior insula (AI) extending into the frontal oper-

culum (FrO); dorsolateral prefrontal cortex (dlPFC) extending to the frontal pole (FP); brain-

stem encompassing the periaqueductal grey (PAG); basal forebrain, in the region of the BST;

and dorsal amygdala (Uncertain Threat > Uncertain Safety; FDR q< .05, whole-brain cor-

rected; Fig 3 and S3 and S4 Tables).

We used a parallel approach to identify regions recruited during the anticipation of tempo-

rally Certain Threat (Certain Threat > Certain Safety; FDR q< .05, whole-brain corrected).

As shown in the middle column of Fig 3, results were notably similar to those evident during

Uncertain Threat anticipation (S5, S6 Tables). In fact, as shown in the right column of Fig 3, a

minimum conjunction analysis [Logical ‘AND;’ 101] revealed voxelwise co-localization in

every key cortical and subcortical region, including the BST and dorsal amygdala in the region

of the Ce (S7 Table). These observations replicate prior work in university samples, confirm

that the MTC paradigm robustly engages the canonical threat anticipation network—includ-

ing the EAc—and set the stage for testing the impact of acute nicotine abstinence on EAc

threat reactivity [42, 43].

Acute nicotine abstinence had a negligible impact on EAc threat reactivity

We leveraged anatomically defined Ce and BST ROIs and spatially unsmoothed fMRI data to

rigorously test the prediction that acute nicotine abstinence amplifies EAc reactivity to threat,

and to explore the possibility that amplification would be more evident during Uncertain

group experienced significantly intensified fear and anxiety during the anticipation of Threat compared to Safety (Group × Valence, p = 0.002). (c)

Psychophysiological arousal was also significantly increased during the anticipation of Threat compared to Safety, reinforcing the validity of the MTC

paradigm (p<0.001). This increase was particularly evident during the anticipation of temporally Uncertain compared to Certain reinforcers

(Valence × Certainty, p<0.001). On average, abstinent participants showed significantly greater arousal throughout the MTC paradigm (inclusive of all

conditions) compared to those who smoked as usual (p = 0.008). (d) Echoing the subjective distress results, the 24-Hour Abstinence group showed a trend

toward greater arousal during Threat anticipation (Group × Valence, p = 0.07). Bars indicate group means, whiskers indicate SEs, and dots indicate

participant-level means.

https://doi.org/10.1371/journal.pone.0288544.g002
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Fig 3. Uncertain and Certain Threat anticipation recruit a common cortico-subcortical network. Key regions (cyan arrowheads) show significantly

increased activation during the anticipation of both Uncertain Threat (left column) and Certain Threat (middle column) compared to their respective control

conditions (FDR q<0.05, whole-brain corrected). Both threat conditions recruited a common neural circuit—including the BST and dorsal amygdala (Ce)—

replicating prior work in university students [42]. Right column depicts the voxelwise overlap (Logical AND of the thresholded maps depicted in the left and

middle columns). BST and dorsal amygdala images are masked to highlight the extended amygdala. Coronal insets show the corresponding statistical

parametric maps without the extended amygdala mask. Abbreviations—Ant., anterior; dlPFC, Dorsolateral Prefrontal Cortex; FrO, Frontal Operculum; BST,

Bed Nucleus of the Stria Terminalis; FDR, False discovery rate; PAG, Periaqueductal Gray; WB, whole-brain corrected.

https://doi.org/10.1371/journal.pone.0288544.g003
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Threat anticipation (Fig 1). As a precursor to hypothesis testing, we used a series of t-tests to

confirm that the Ce and BST ROIs exhibit significant activation during the anticipation of Cer-

tain and Uncertain Threat, relative to their respective control conditions (Fig 4). Consistent

with the voxelwise results (Fig 3), both ROIs were significantly recruited by both kinds of

Threat, ts(75)>2.22, ps<0.03 (S8 Table). We then used a standard mixed-effects GLM for

hypothesis testing. As shown in Fig 4, results revealed the BST was significantly more sensitive

to threat anticipation—irrespective of threat certainty—compared to the Ce (Region: F(1,73) =

9.27, p = 0.003). On average, the EAc showed significantly greater activation during the antici-

pation of temporally Uncertain Threat (Threat Certainty: F(1,73) = 5.39, p = 0.02). Interpreta-

tion of these effects is somewhat tempered by a trend-level Region × Threat Certainty

interaction (F(73) = 2.80, p = 0.10). Focal comparisons indicated that that the Ce showed an

indiscriminate pattern of reactivity, with statistically indistinguishable levels of heightened

activation during the anticipation of Certain and Uncertain Threat (t(74) = 0.65, p = 0.52). In

contrast, the BST showed a more pronounced preference for responding to Uncertain Threat

anticipation (t(74) = 2.80, p = 0.007). No other GLM effects were significant (ps>0.33), indi-

cating that acute nicotine abstinence had a negligible impact on EAc threat reactivity, contrary

to prediction. Although the 24-Hour Abstinence group did show numerically greater EAc acti-

vation during threat anticipation, as hypothesized, the standardized group differences were

non-significant (ts(73)<0.03 ps>0.64) and very small to nil (Cohen’s ds: Ce = 0.009,

BST = 0.11, EAc Average = 0.08; Fig 5). Likewise, exploratory whole-brain voxelwise analyses

did not uncover any regions showing significant nicotine abstinence effects for either Certain

or Uncertain Threat (FDR q<0.05, whole-brain corrected), perhaps reflecting the highly dis-

tributed neural substrates of subjective distress [103, 104].

Different modalities provide unique perspectives on the impact of acute

nicotine abstinence

The overarching goal of this project was to develop a more complete understanding of the

psychobiological impact of acute nicotine abstinence and, to that end, we acquired a multi-

modal battery of subjective (questionnaires and ratings) and objective (skin conductance and

fMRI) measures. A natural question concerns the degree to which those ‘readouts’ reflect a sin-

gle or small number of latent states (e.g., ‘abstinence’ or ‘anxiety’). Do subjective reports of

threat-elicited distress covary with objective signs of physiological arousal, for instance? Does

BST threat reactivity covary with individual differences in the subjective intensity of smoking

urges? To address these questions and inform the interpretation of our primary hypothesis

tests, we computed Spearman correlations across all of the measures acquired at the neuroim-

aging session, both for the entire sample and for the 24-Hour Abstinence group (S9 and S10

Tables). While we detected numerous nominally significant associations, on balance, the four

measurement modalities showed a relatively weak and inconsistent pattern of covariance, in

broad accord with work underscoring the modest coherence (‘concordance’ or ‘synchrony’) of

emotion readouts [105, 106]. In sum, each of the four measurement modalities acquired here

provides a distinct and relatively independent perspective on the consequences of acute nico-

tine abstinence.

Discussion

Tobacco smoking imposes a staggering burden on global public health [1, 5]. Relapse is com-

mon and existing cessation aids are far from curative, underscoring the urgency of developing

a fuller understanding of the consequences of acute nicotine abstinence and withdrawal [2, 5,

107, 108]. Converging lines of clinical and experience sampling research highlight the
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Fig 4. The impact of threat anticipation and acute nicotine abstinence on the EAc. Figure depicts mean contrast coefficients (Threat—Safety) during the

anticipation of temporally Certain or Uncertain Threat—relative to their respective control conditions—in the anatomically defined Ce (yellow) and BST

(magenta) ROIs for the Smoke-as-Usual (grey) and 24-hour Abstinence (red) groups. The BST was more sensitive to threat—irrespective of temporal certainty

—compared to the Ce (p = 0.003). On average, the two divisions of the EAc showed greater activation during Uncertain Threat anticipation (p = 0.02).

Interpretation of these effects is tempered by a trend-level Region × Threat Certainty interaction (p = 0.10). The Ce showed similarly heightened activation

during Certain and Uncertain Threat anticipation (p = 0.52), whereas the BST showed a clear preference for Uncertain Threat (p = 0.007). Other effects were
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importance of anxious withdrawal symptoms and negative reinforcement mechanisms for

maintaining tobacco use in humans, but the underlying neurobiology has remained elusive,

impeding therapeutics development [5, 14, 15]. Mechanistic work in animals suggests that

anxious withdrawal reflects neuroplastic alterations in EAc neurotransmission that promote

exaggerated stressor reactivity in nicotine-dependent rats and mice, but the translational rele-

vance of these discoveries to the complexities of the human brain and human emotion remain

unclear [5, 9, 10]. Here we leveraged a novel combination of subjective, psychophysiological,

and neurobiological approaches to understand the impact of 24-hour nicotine abstinence in

daily tobacco smokers (Fig 1). Results demonstrated that the abstinence manipulation worked

as intended, potently increasing smoking urges and subjective symptoms of withdrawal,

nonsignificant (ps>0.33), indicating that acute nicotine abstinence had a negligible impact on EAC threat reactivity. Bars indicate group means, whiskers

indicate SEs, and dots indicate participant-level means. Abbreviations—BST, bed nucleus of the stria terminalis; Ce, central nucleus of the amygdala; ROI,

region of interest.

https://doi.org/10.1371/journal.pone.0288544.g004

Fig 5. Forest plot summarizing the consequences of acute nicotine abstinence across key outcomes. To facilitate comparison, results are depicted as

standardized group mean differences (dots; Cohen’s d). Whiskers indicate the precision of the standardized differences (95% confidence interval). Upper panel
(light grey) shows group differences for subjective feelings of smoking urgency and withdrawal, both assessed just prior to scanning. Lower panel (dark grey)

shows standardized group differences for the threat-reactivity (Threat minus Safety) measures acquired during fMRI scanning, including threat-evoked

changes in subjective fear and anxiety, objective physiological arousal (SCL), and EAc activation. While all of the standardized group differences were in the

expected positive direction (24-Hour Abstinence> Smoke-as-Usual), there were marked differences in magnitude across outcomes. Nicotine abstinence

exerted a large to very large (red) impact on all of the self-report measures of subjective experience (ds = 0.75–2.33). In contrast, nicotine abstinence exerted a

more moderate influence on threat-elicited arousal (green; d = 0.44) and a very small to nil impact on the fMRI measures of EAc threat reactivity (blue;
ds = 0.01–0.11). Effect sizes are interpreted with reference to widely used benchmarks (Large, d = 0.80; Medium, d = 0.50; Small, d = 0.20) [138]. Abbreviations

—BST, bed nucleus of the stria terminalis; Ce, central nucleus of the amygdala; CI, confidence interval; EAc, central extended amygdala; fMRI, functional

magnetic resonance imaging.

https://doi.org/10.1371/journal.pone.0288544.g005
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including anxious mood (S1 Fig). The threat-anticipation paradigm also had the expected con-

sequences, amplifying subjective and somatic reactivity to threat, and recruiting the canonical

threat-anticipation network, including the BST and dorsal amygdala (Ce) (Figs 2–4).

Acute abstinence had robust consequences for subjective responses to the threat-anticipa-

tion paradigm, amplifying the intensity of threat-evoked fear and anxiety (Fig 2B). A similar

trend (p = 0.07) was evident for threat-evoked arousal (Fig 2D). Acute abstinence was also

associated with a tonic increase in arousal across the experimental threat and safety contexts

(Fig 2C). Across these two measures, the magnitude of abstinence-induced increases in threat

reactivity was similar across certain and uncertain contexts, suggesting less specificity than

that observed in some prior psychophysiological studies [31]. Although the 24-Hour Absti-

nence group did show numerically greater EAc activation in the threat contexts, as hypothe-

sized, standardized group differences were negligible and whole-brain analyses did not

uncover any other regions showing significant abstinence effects (Fig 4). Across ‘readouts’,

acute abstinence showed a large to very large impact on all of the self-report measures of sub-

jective experience, including tonic measures of smoking urges and withdrawal, and reactive

measures of threat-elicited distress. In contrast, abstinence exerted a moderate influence on

threat-elicited arousal, and a very small to nil impact on fMRI measures of EAc threat reactiv-

ity (Fig 5). Follow-up analyses revealed weak coherence across measures, suggesting that they

provide comparatively independent perspectives on the consequences of acute nicotine absti-

nence (S9 and S10 Tables). Collectively, these new observations provide a framework for con-

ceptualizing the impact of acute nicotine abstinence and anxious withdrawal, with

implications for basic, translational, and clinical science.

Clinical, observational (e.g. EMA), experimental, and animal behavioral data suggest that

withdrawal-related negative affect and heightened stressor reactivity are key triggers of lapses

during nicotine cessation attempts [10, 14, 16, 24, 28–30]. The present results reinforce this

hypothesis. Leveraging a randomized study design, well-matched groups, and a potent experi-

mental stressor, we observed robust increases in threat-evoked fear and anxiety (Figs 1, 2 and

5; Table 1). Our approach—which leveraged near-real-time ratings collected on a random

subset of trials—circumvents the recall biases that can influence retrospective (end-of-task or

end-of-session) assessments. Skin conductance evinced a parallel trend, tempering potential

concerns centered on demand characteristics. Taken together, this body of work reinforces the

significance of withdrawal-related anxiety and heightened stressor reactivity, and points to the

need to develop cessation interventions that more effectively dampen stressor reactivity [21,

109–111]. Psychosocial treatments aimed at cultivating stronger emotion regulation skills or

weakening the link between distress and smoking may be especially useful [2].

Work in rodents suggests that the pervasive increases in anxiety (tonic) and heightened

surges of stressor-evoked distress (reactive) that often accompany periods of abstinence in nic-

otine-dependent humans reflect hyper-reactivity to threat in the EAc [5, 9, 10]. Yet our unbi-

ased ROI results show that the impact of 24-hour nicotine abstinence on EAc threat reactivity

is negligible and largely unrelated to the subjective symptoms—the elevated smoking urges,

withdrawal symptoms, and stressor-evoked distress—thought to maintain addiction in human

smokers (Figs 4, 5 and S9 and S10 Tables).

How should we interpret this apparent failure of translation? One possibility is that the

mechanistic insights gleaned from animal models of nicotine dependence are fundamentally

correct, but conventional fMRI approaches—which rely on bulk changes in regional blood

oxygenation—are insufficiently sensitive to underlying alterations in EAc molecular signaling

and neuronal function [112]. Or, it might be that the threat-anticipation paradigm used here

and in prior human psychophysiology studies is suboptimal (“wrong” human assay). Most of

the anxiety assays used in rodent models of addiction—conditioned-place avoidance, elevated-
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plus maze, open field, shock-probe burying—focus on instrumental defensive behaviors emit-

ted over extended assessment periods (5–15 minutes) [35, 36, 113–115]. In contrast, the Mary-

land Threat Countdown and other popular threat-anticipation assays (e.g., NPU, Pavlovian

threat conditioning) are structured as randomly intermixed, relatively brief (5–90 s) periods of

safety and threat [64, 116]. To the extent that nicotine abstinence causes persistent, compara-

tively sluggish alterations in EAc threat reactivity—as one might expect based on the temporal

dynamics of stress- and deprivation-induced changes in EAc neurotransmission [e.g., 35, 117]

—such ‘event-related’ repeated-measures designs may be suboptimal for detecting neural signs

of threat hyper-reactivity. This speculation is consistent with the robust non-specific increase

in somatic arousal that we observed in the 24-hour Abstinence group (Fig 2C). It is also con-

sistent with the results of the only startle study that employed a between-subjects design. In a

seminal 2010 report, Hogle and colleagues demonstrated that 24-hour nicotine abstinence

magnified startle reactivity during a ~10-min block of temporally uncertain threat (shock), but

was without effect in an independent sample of deprived smokers exposed to an intermixed

block of certain-threat and certain-safety cues [31]. Although conventional fMRI sequences

cannot quantify minutes-long changes in neural activity, recently established multiband perfu-

sion (‘arterial spin labeling’) MRI sequences can do so with adequate anatomical resolution

(<3-mm3). Paired with a slow block-related design (e.g., 5-min baseline, 5-min uncertain

threat, 5-min recovery), this approach would afford the opportunity to examine abstinence-

induced alterations in tonic, reactive, and persistent (‘spill-over’) EAc activity. It would also

afford the opportunity to explore stressors that more closely resemble those evident in real-

world settings (e.g., social stressors). While we cannot rule out the possibility that the structure

of our threat-anticipation paradigm is suboptimal for gauging the impact of nicotine absti-

nence on EAc function, the medium-to-large effects evident for stressor-potentiated distress

and arousal (Valence and Group × Valence effects), and the robust impact on EAc activation

across the two groups, run counter to this argument (Figs 2 and 3).

Another possibility is that our results represent a genuine translation failure; that the neuro-

biological mechanisms identified in rodents are sound, but that shock-probe burying and

other instrumental defensive behaviors are a suboptimal means of modeling the subjective

feelings of anxiety and distress that are central to withdrawal and relapse among abstinent

human smokers (“wrong” animal assay). We are not the first commentators to raise this con-

cern [52, 57, 106, 118]. It is broadly consistent with both the comparatively weak coherence

that we observed across readouts and with the failure of several novel therapeutic compounds

—which emerged from rodent models of anxiety and addiction—to show efficacy in human

clinical and experimental-therapeutics trials [16, 45, 119]. For example, corticotropin-releasing

hormone (receptor 1) antagonists have been shown to exacerbate subjective anxiety elicited by a

social stressor (Trier Social Stress Task) and potentiate startle reactivity to certain-and-imminent

shock delivery, despite evidence of reduced amygdala glucose metabolism and blunted amygdala

reactivity to emotional faces [44, 120, 121]. On balance, these considerations underscore the need

to develop coordinated cross-species models of abstinence-induced anxiety. An optimal transla-

tional model of withdrawal-induced anxiety would rely on broadly similar procedures across spe-

cies (e.g., 5–10 min exposure to temporally uncertain shock), show similar behavioral signals

across species (e.g., deprivation-induced startle potentiation), show evidence of behavioral rele-

vance across species (e.g., associations with consumption, reinstatement, or lapses), show evi-

dence of experiential relevance in humans (e.g., heightened symptoms of anxious withdrawal and

craving), and be amenable to functional neuroimaging in both species (e.g., perfusion fMRI).

Demonstrating consistent effects across rodent strains or species would further enhance confi-

dence in translational relevance [122, 123]. Preclinical studies of anxiety in nonhuman primates

underscore the feasibility and added-value of this approach [34, 124, 125].
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A final possibility is that we simply lack the power to detect modest abstinence-induced

changes in EAc threat reactivity. As detailed in the Method, our study was powered to detect

medium-to-large effects (Cohen’s d>0.66). Inspection of the 95% confidence intervals shown

in Fig 5 raise the possibility that the true impact of acute nicotine abstinence on EAc threat

reactivity (as indexed using the present approach) could plausibly be as large as d = .50

(‘medium’ effect). Reliably detecting an effect of this magnitude would require ~120 usable

datasets. Even under this optimistic scenario, the distribution of EAc threat reactivity would

massively (80.3%) overlap across the groups [126]. Put another way, with a medium-sized

effect there is only a 63.8% chance that an individual picked at random from the 24-hour

Abstinent group would show greater EAc threat reactivity than one picked at random from

the Smoke-as-Usual group [126]. These statistical considerations make it unlikely that EAc

threat reactivity—at least as indexed using the present neuroimaging approach—could be used

as a biomarker of acute nicotine abstinence [127]. It lacks the sensitivity and specificity neces-

sary for practical applications [128].

While not the primary aim of the present project, our neuroimaging findings also shed

light on the neurobiology of fear and anxiety. Since the time of Freud, the distinction between

certain (‘fear’) and uncertain (‘anxiety’) danger has been a key feature of neuropsychiatric

models of emotion—including the National Institute of Mental Health’s influential Research

Domain Criteria (RDoC) framework—but the architecture of the underlying neural systems

has remained contentious [34, 51–57]. Our whole-brain voxelwise results demonstrate that

uncertain-threat anticipation recruits a distributed network of fronto-cortical (MCC, AI/FrO,

and dlPFC/FP) and subcortical (PAG, BST, and dorsal amygdala) regions (Fig 3). Analyses

focused on the anticipation of temporally certain threat revealed a similar pattern, with voxels

sensitive to both kinds of threat evident across these key regions (Fig 3). These observations

dovetail with recent meta-analyses of the neuroimaging literature, replicate prior evidence of

anatomical co-location in university students, and reinforce the conclusion that ‘fear’ and ‘anx-

iety’ reflect a shared set of neural building blocks [42, 129, 130].

Our results also have implications for on-going debates about the functional architecture of

the EAc [34]. Inspired by an earlier-generation of lesion studies in rodents [131], it is widely

believed that these regions are functionally dissociable, with the amygdala mediating phasic

responses to clear-and-immediate danger (‘fear’) and the BST mediating sustained responses

to uncertain-or-remote danger (‘anxiety’) [52, 132–134]. This hypothesized double dissocia-

tion has even been enshrined in the RDoC framework [56, 135, 136]. Leveraging the enhanced

resolution afforded by a best-practices fMRI pipeline and spatially unsmoothed data, our unbi-

ased ROI results demonstrate that the Ce and the BST both show significant engagement

across threat contexts, consistent with our voxelwise observations (Figs 3 and 4; S8 Table). On

average, the EAc showed significantly greater activation during the anticipation of temporally

uncertain threat, paralleling the concurrent measures of subjective distress and objective

arousal (Figs 2 and 4). While the Region × Threat Certainty interaction was only marginally

significant (p = 0.10), focal comparisons indicated that that the Ce showed an indiscriminate

pattern of reactivity, with statistically indistinguishable levels of heightened activation during

the anticipation of certain and uncertain threat. In contrast, the BST showed preferential acti-

vation during the anticipation of uncertain threat, consistent with a recent large-scale

(n = 109) study that employed anatomical ROIs [137]. These observations are broadly consis-

tent with the influential model of Davis and colleagues—which suggests that the Ce is involved

in responding to both kinds of threat—but run counter to the popular double dissociation

model (Ce: Certain >> Uncertain� 0; BST: 0� Certain << Uncertain) [51]. While our

understanding remains far from complete, this body of observations underscores the need to
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reformulate RDoC and other models of fear and anxiety that imply a strict segregation of cer-

tain and uncertain threat processing in the EAc.

Tobacco smoking is a leading preventable cause of morbidity and mortality, and converg-

ing lines of evidence underscore the relevance of abstinence-induced anxiety and negative

reinforcement mechanisms to the maintenance and treatment of nicotine use. Our experimen-

tal results reinforce and extend claims—made largely made on the basis of observational data

—that acute nicotine abstinence triggers persistent increases in anxious mood and potentiates

subjective stressor reactivity. Our neuroimaging results demonstrate that the impact of acute

abstinence on EAc threat reactivity is negligible in humans, raising questions about the transla-

tional relevance of popular animal and human experimental models of addiction. A key chal-

lenge for the future will be to establish coordinated cross-species models of anxiety and

addiction (bi-directional translation). A comprehensive multidimensional approach, well-

established threat-anticipation task, and best-practice approaches to data acquisition, process-

ing, and analysis enhance confidence in the robustness and translational relevance of our

results. These observations provide a novel framework for conceptualizing anxious withdrawal

symptoms and negative reinforcement mechanisms and for accelerating the development of

more effective treatment strategies for nicotine dependence.
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